| @@ -1,149 +1,144 @@ | |||
| # main_random.py | |||
| import argparse | |||
| import numpy as np | |||
| import pandas as pd | |||
| import scipy.sparse as sp | |||
| from sklearn.model_selection import KFold | |||
| from sklearn.metrics import roc_auc_score, average_precision_score, precision_score, recall_score, f1_score | |||
| from model import DeepTraCDR, Optimizer | |||
| from utils import evaluate_auc, common_data_index | |||
| from data_sampler import TargetSampler | |||
| from data_loader import load_data | |||
| import torch | |||
| from torch.optim.lr_scheduler import OneCycleLR | |||
| # Clear CUDA cache to optimize GPU memory usage | |||
| torch.cuda.empty_cache() | |||
| def main(): | |||
| """ | |||
| Main function to execute the DeepTraCDR model training and evaluation pipeline. | |||
| Parses command-line arguments, loads data, performs k-fold cross-validation, | |||
| and reports performance metrics. | |||
| """ | |||
| # Initialize argument parser for command-line arguments | |||
| parser = argparse.ArgumentParser(description="DeepTraCDR Advanced Model Training") | |||
| parser.add_argument('-device', type=str, default="cuda:0" if torch.cuda.is_available() else "cpu", | |||
| help="Device to run the model on (cuda:0 or cpu)") | |||
| parser.add_argument('-data', type=str, default='ccle', help="Dataset to use (gdsc or ccle)") | |||
| parser.add_argument('--wd', type=float, default=1e-4, help="Weight decay for optimizer") | |||
| parser.add_argument('--layer_size', nargs='+', type=int, default=[512], | |||
| help="List of layer sizes for the GCN model") | |||
| parser.add_argument('--gamma', type=float, default=15, help="Gamma parameter for model") | |||
| parser.add_argument('--epochs', type=int, default=1000, help="Number of training epochs") | |||
| parser.add_argument('--test_freq', type=int, default=50, help="Frequency of evaluation during training") | |||
| parser.add_argument('--lr', type=float, default=0.0005, help="Learning rate for optimizer") | |||
| args = parser.parse_args() | |||
| # Load target drug data based on the specified dataset | |||
| if args.data == "gdsc": | |||
| target_drug_cids = np.array([5330286, 11338033, 24825971]) | |||
| # Load cell-drug binary matrix for GDSC dataset | |||
| cell_drug = pd.read_csv("/media/external_16TB_1/ali_kianfar/Data/GDSC/cell_drug_binary.csv", | |||
| index_col=0, header=0) | |||
| cell_drug.columns = cell_drug.columns.astype(np.int32) | |||
| drug_cids = cell_drug.columns.values | |||
| cell_target_drug = np.array(cell_drug.loc[:, target_drug_cids], dtype=np.float32) | |||
| target_pos_num = sp.coo_matrix(cell_target_drug).data.shape[0] | |||
| target_indexes = common_data_index(drug_cids, target_drug_cids) | |||
| elif args.data == "ccle": | |||
| target_drug_cids = np.array([5330286]) | |||
| # Load cell-drug binary matrix for CCLE dataset | |||
| cell_drug = pd.read_csv("/media/external_16TB_1/ali_kianfar/Data/CCLE/cell_drug_binary.csv", | |||
| index_col=0, header=0) | |||
| cell_drug.columns = cell_drug.columns.astype(np.int32) | |||
| drug_cids = cell_drug.columns.values | |||
| cell_target_drug = np.array(cell_drug.loc[:, target_drug_cids], dtype=np.float32) | |||
| target_pos_num = sp.coo_matrix(cell_target_drug).data.shape[0] | |||
| target_indexes = common_data_index(drug_cids, target_drug_cids) | |||
| # Load dataset components including adjacency matrix, fingerprints, and expression data | |||
| full_adj, drug_fingerprints, exprs, null_mask, pos_num, args = load_data(args) | |||
| full_adj_np = full_adj.copy() | |||
| # Log original adjacency matrix shape for debugging | |||
| print(f"Original adj_mat shape: {full_adj.shape}") | |||
| # Log shapes of loaded data for verification | |||
| print("\n--- Data Shapes ---") | |||
| print(f"Expression data shape: {exprs.shape}") | |||
| print(f"Null mask shape: {null_mask.shape}") | |||
| # Convert adjacency matrix to PyTorch tensor if it is a NumPy array | |||
| if isinstance(full_adj, np.ndarray): | |||
| full_adj = torch.from_numpy(full_adj).float().to(args.device) | |||
| # Log converted adjacency matrix shape for verification | |||
| print(f"Converted adj_mat shape: {full_adj.shape}") | |||
| # Initialize k-fold cross-validation parameters | |||
| k = 5 | |||
| n_kfolds = 5 | |||
| all_metrics = { | |||
| 'auc': [], | |||
| 'auprc': [], | |||
| } | |||
| # Perform k-fold cross-validation | |||
| for n_kfold in range(n_kfolds): | |||
| kfold = KFold(n_splits=k, shuffle=True, random_state=n_kfold) | |||
| for fold, (train_idx, test_idx) in enumerate(kfold.split(np.arange(target_pos_num))): | |||
| # Initialize data sampler for train/test split | |||
| sampler = TargetSampler( | |||
| response_mat=full_adj_np, | |||
| null_mask=null_mask, | |||
| target_indexes=target_indexes, | |||
| pos_train_index=train_idx, | |||
| pos_test_index=test_idx | |||
| ) | |||
| # Initialize DeepTraCDR model | |||
| model = DeepTraCDR( | |||
| adj_mat=full_adj, | |||
| cell_exprs=exprs, | |||
| drug_finger=drug_fingerprints, | |||
| layer_size=args.layer_size, | |||
| gamma=args.gamma, | |||
| device=args.device | |||
| ) | |||
| # Initialize optimizer for model training | |||
| opt = Optimizer( | |||
| model=model, | |||
| train_data=sampler.train_data, | |||
| test_data=sampler.test_data, | |||
| test_mask=sampler.test_mask, | |||
| train_mask=sampler.train_mask, | |||
| adj_matrix=full_adj, | |||
| evaluate_fun=evaluate_auc, | |||
| lr=args.lr, | |||
| wd=args.wd, | |||
| epochs=args.epochs, | |||
| test_freq=args.test_freq, | |||
| device=args.device | |||
| ) | |||
| # Train model and retrieve evaluation metrics | |||
| true, pred, best_auc, best_auprc = opt.train() | |||
| # Store metrics for this fold | |||
| all_metrics['auc'].append(best_auc) | |||
| all_metrics['auprc'].append(best_auprc) | |||
| # Log performance for the current fold | |||
| print(f"Fold {n_kfold * k + fold + 1}: AUC={best_auc:.4f}, AUPRC={best_auprc:.4f}") | |||
| # Calculate and log mean and standard deviation of metrics | |||
| print(f"\nFinal Average Metrics:") | |||
| for metric, values in all_metrics.items(): | |||
| mean = np.mean(values) | |||
| std = np.std(values) | |||
| print(f"{metric.upper()}: {mean:.4f} ± {std:.4f}") | |||
| if __name__ == "__main__": | |||
| # Set precision for matrix multiplication to optimize performance | |||
| torch.set_float32_matmul_precision('high') | |||
| # main_target.py | |||
| import argparse | |||
| import numpy as np | |||
| import pandas as pd | |||
| import scipy.sparse as sp | |||
| from sklearn.model_selection import KFold | |||
| from sklearn.metrics import roc_auc_score, average_precision_score, precision_score, recall_score, f1_score | |||
| from model import DeepTraCDR, ModelOptimizer | |||
| from utils import evaluate_auc, common_data_index | |||
| from data_sampler import TargetSampler | |||
| from data_loader import load_data | |||
| import torch | |||
| from torch.optim.lr_scheduler import OneCycleLR | |||
| # Clear CUDA cache to optimize GPU memory usage | |||
| torch.cuda.empty_cache() | |||
| def main(): | |||
| """ | |||
| Main function to execute the DeepTraCDR model training and evaluation pipeline. | |||
| Parses command-line arguments, loads data, performs k-fold cross-validation, | |||
| and reports performance metrics. | |||
| """ | |||
| # Initialize argument parser for command-line arguments | |||
| parser = argparse.ArgumentParser(description="DeepTraCDR Advanced Model Training") | |||
| parser.add_argument('-device', type=str, default="cuda:0" if torch.cuda.is_available() else "cpu", | |||
| help="Device to run the model on (cuda:0 or cpu)") | |||
| parser.add_argument('-data', type=str, default='gdsc', help="Dataset to use (gdsc or ccle)") | |||
| parser.add_argument('--wd', type=float, default=1e-4, help="Weight decay for optimizer") | |||
| parser.add_argument('--layer_size', nargs='+', type=int, default=[512], | |||
| help="List of layer sizes for the GCN model") | |||
| parser.add_argument('--gamma', type=float, default=15, help="Gamma parameter for model") | |||
| parser.add_argument('--epochs', type=int, default=1000, help="Number of training epochs") | |||
| parser.add_argument('--test_freq', type=int, default=50, help="Frequency of evaluation during training") | |||
| parser.add_argument('--lr', type=float, default=0.0005, help="Learning rate for optimizer") | |||
| args = parser.parse_args() | |||
| # Load target drug data based on the specified dataset | |||
| if args.data == "gdsc": | |||
| target_drug_cids = np.array([5330286, 11338033, 24825971]) | |||
| # Load cell-drug binary matrix for GDSC dataset | |||
| cell_drug = pd.read_csv("/media/external_16TB_1/ali_kianfar/Data/GDSC/cell_drug_binary.csv", | |||
| index_col=0, header=0) | |||
| cell_drug.columns = cell_drug.columns.astype(np.int32) | |||
| drug_cids = cell_drug.columns.values | |||
| cell_target_drug = np.array(cell_drug.loc[:, target_drug_cids], dtype=np.float32) | |||
| target_pos_num = sp.coo_matrix(cell_target_drug).data.shape[0] | |||
| target_indexes = common_data_index(drug_cids, target_drug_cids) | |||
| elif args.data == "ccle": | |||
| target_drug_cids = np.array([5330286]) | |||
| # Load cell-drug binary matrix for CCLE dataset | |||
| cell_drug = pd.read_csv("/media/external_16TB_1/ali_kianfar/Data/CCLE/cell_drug_binary.csv", | |||
| index_col=0, header=0) | |||
| cell_drug.columns = cell_drug.columns.astype(np.int32) | |||
| drug_cids = cell_drug.columns.values | |||
| cell_target_drug = np.array(cell_drug.loc[:, target_drug_cids], dtype=np.float32) | |||
| target_pos_num = sp.coo_matrix(cell_target_drug).data.shape[0] | |||
| target_indexes = common_data_index(drug_cids, target_drug_cids) | |||
| # Load dataset components including adjacency matrix, fingerprints, and expression data | |||
| full_adj, drug_fingerprints, exprs, null_mask, pos_num, args = load_data(args) | |||
| full_adj_np = full_adj.copy() | |||
| # Log original adjacency matrix shape for debugging | |||
| print(f"Original adj_mat shape: {full_adj.shape}") | |||
| # Log shapes of loaded data for verification | |||
| print("\n--- Data Shapes ---") | |||
| print(f"Expression data shape: {exprs.shape}") | |||
| print(f"Null mask shape: {null_mask.shape}") | |||
| # Convert adjacency matrix to PyTorch tensor if it is a NumPy array | |||
| if isinstance(full_adj, np.ndarray): | |||
| full_adj = torch.from_numpy(full_adj).float().to(args.device) | |||
| # Log converted adjacency matrix shape for verification | |||
| print(f"Converted adj_mat shape: {full_adj.shape}") | |||
| # Initialize k-fold cross-validation parameters | |||
| k = 5 | |||
| n_kfolds = 5 | |||
| all_metrics = { | |||
| 'auc': [], | |||
| 'auprc': [], | |||
| } | |||
| # Perform k-fold cross-validation | |||
| for n_kfold in range(n_kfolds): | |||
| kfold = KFold(n_splits=k, shuffle=True, random_state=n_kfold) | |||
| for fold, (train_idx, test_idx) in enumerate(kfold.split(np.arange(target_pos_num))): | |||
| # Initialize data sampler for train/test split | |||
| sampler = TargetSampler(response_mat=full_adj_np, null_mask=null_mask, target_indexes=target_indexes, | |||
| pos_train_index=train_idx, pos_test_index=test_idx) | |||
| # Initialize DeepTraCDR model | |||
| model = DeepTraCDR( | |||
| adj_mat=full_adj, | |||
| cell_exprs=exprs, | |||
| drug_fingerprints=drug_fingerprints, | |||
| layer_size=args.layer_size, | |||
| gamma=args.gamma, | |||
| device=args.device | |||
| ) | |||
| # Initialize optimizer for model training | |||
| opt = ModelOptimizer( | |||
| model=model, | |||
| train_data=sampler.train_data, | |||
| test_data=sampler.test_data, | |||
| test_mask=sampler.test_mask, | |||
| train_mask=sampler.train_mask, | |||
| adj_matrix=full_adj, | |||
| evaluate_fun=evaluate_auc, | |||
| lr=args.lr, | |||
| wd=args.wd, | |||
| epochs=args.epochs, | |||
| test_freq=args.test_freq, | |||
| device=args.device | |||
| ) | |||
| # Train model and retrieve evaluation metrics | |||
| true, pred, best_auc, best_auprc = opt.train() | |||
| # Store metrics for this fold | |||
| all_metrics['auc'].append(best_auc) | |||
| all_metrics['auprc'].append(best_auprc) | |||
| # Log performance for the current fold | |||
| print(f"Fold {n_kfold * k + fold + 1}: AUC={best_auc:.4f}, AUPRC={best_auprc:.4f}") | |||
| # Calculate and log mean and standard deviation of metrics | |||
| print(f"\nFinal Average Metrics:") | |||
| for metric, values in all_metrics.items(): | |||
| mean = np.mean(values) | |||
| std = np.std(values) | |||
| print(f"{metric.upper()}: {mean:.4f} ± {std:.4f}") | |||
| if __name__ == "__main__": | |||
| # Set precision for matrix multiplication to optimize performance | |||
| torch.set_float32_matmul_precision('high') | |||
| main() | |||