Browse Source

Update 'data_sampler.py'

master
Zahra Asgari 1 day ago
parent
commit
31364a2705
1 changed files with 336 additions and 359 deletions
  1. 336
    359
      data_sampler.py

+ 336
- 359
data_sampler.py View File

@@ -1,360 +1,337 @@
import torch
import numpy as np
import scipy.sparse as sp
from typing import Tuple, Optional
from utils import to_coo_matrix, to_tensor, mask
class RandomSampler:
"""
Samples edges from an adjacency matrix to create train/test sets.
Converts the training set into torch.Tensor format.
"""
def __init__(
self,
adj_mat_original: np.ndarray,
train_index: np.ndarray,
test_index: np.ndarray,
null_mask: np.ndarray
) -> None:
self.adj_mat = to_coo_matrix(adj_mat_original)
self.train_index = train_index
self.test_index = test_index
self.null_mask = null_mask
# Sample positive edges
self.train_pos = self._sample_edges(train_index)
self.test_pos = self._sample_edges(test_index)
# Sample negative edges
self.train_neg, self.test_neg = self._sample_negative_edges()
# Create masks
self.train_mask = mask(self.train_pos, self.train_neg, dtype=int)
self.test_mask = mask(self.test_pos, self.test_neg, dtype=bool)
# Convert to tensors
self.train_data = to_tensor(self.train_pos)
self.test_data = to_tensor(self.test_pos)
def _sample_edges(self, index: np.ndarray) -> sp.coo_matrix:
"""Samples edges from the adjacency matrix based on provided indices."""
row = self.adj_mat.row[index]
col = self.adj_mat.col[index]
data = self.adj_mat.data[index]
return sp.coo_matrix(
(data, (row, col)),
shape=self.adj_mat.shape
)
def _sample_negative_edges(self) -> Tuple[sp.coo_matrix, sp.coo_matrix]:
"""
Samples negative edges for training and testing.
Negative edges are those not present in the adjacency matrix.
"""
pos_adj_mat = self.null_mask + self.adj_mat.toarray()
neg_adj_mat = sp.coo_matrix(np.abs(pos_adj_mat - 1))
all_row, all_col, all_data = neg_adj_mat.row, neg_adj_mat.col, neg_adj_mat.data
indices = np.arange(all_data.shape[0])
# Sample negative test edges
test_n = self.test_index.shape[0]
test_neg_indices = np.random.choice(indices, test_n, replace=False)
test_row, test_col, test_data = (
all_row[test_neg_indices],
all_col[test_neg_indices],
all_data[test_neg_indices]
)
test_neg = sp.coo_matrix(
(test_data, (test_row, test_col)),
shape=self.adj_mat.shape
)
# Sample negative train edges
train_neg_indices = np.delete(indices, test_neg_indices)
train_row, train_col, train_data = (
all_row[train_neg_indices],
all_col[train_neg_indices],
all_data[train_neg_indices]
)
train_neg = sp.coo_matrix(
(train_data, (train_row, train_col)),
shape=self.adj_mat.shape
)
return train_neg, test_neg
class NewSampler:
"""
Samples train/test data and masks for a specific target dimension/index.
"""
def __init__(
self,
original_adj_mat: np.ndarray,
null_mask: np.ndarray,
target_dim: Optional[int],
target_index: int
) -> None:
self.adj_mat = original_adj_mat
self.null_mask = null_mask
self.dim = target_dim
self.target_index = target_index
self.train_data, self.test_data = self._sample_train_test_data()
self.train_mask, self.test_mask = self._sample_train_test_mask()
def _sample_target_test_index(self) -> np.ndarray:
"""Samples indices for positive test edges based on target dimension."""
if self.dim:
return np.where(self.adj_mat[:, self.target_index] == 1)[0]
return np.where(self.adj_mat[self.target_index, :] == 1)[0]
def _sample_train_test_data(self) -> Tuple[torch.Tensor, torch.Tensor]:
"""Samples train and test data based on target indices."""
test_data = np.zeros(self.adj_mat.shape, dtype=np.float32)
test_index = self._sample_target_test_index()
if self.dim:
test_data[test_index, self.target_index] = 1
else:
test_data[self.target_index, test_index] = 1
train_data = self.adj_mat - test_data
return torch.from_numpy(train_data), torch.from_numpy(test_data)
def _sample_train_test_mask(self) -> Tuple[torch.Tensor, torch.Tensor]:
"""Creates train and test masks, including negative sampling."""
test_index = self._sample_target_test_index()
neg_value = np.ones(self.adj_mat.shape, dtype=np.float32) - self.adj_mat - self.null_mask
neg_test_mask = np.zeros(self.adj_mat.shape, dtype=np.float32)
if self.dim:
target_neg_index = np.where(neg_value[:, self.target_index] == 1)[0]
else:
target_neg_index = np.where(neg_value[self.target_index, :] == 1)[0]
target_neg_test_index = (
np.random.choice(target_neg_index, len(test_index), replace=False)
if len(test_index) < len(target_neg_index)
else target_neg_index
)
if self.dim:
neg_test_mask[target_neg_test_index, self.target_index] = 1
neg_value[:, self.target_index] = 0
else:
neg_test_mask[self.target_index, target_neg_test_index] = 1
neg_value[self.target_index, :] = 0
train_mask = (self.train_data.numpy() + neg_value).astype(bool)
test_mask = (self.test_data.numpy() + neg_test_mask).astype(bool)
return torch.from_numpy(train_mask), torch.from_numpy(test_mask)
class SingleSampler:
"""
Samples train/test data and masks for a specific target index.
Returns results as torch.Tensor.
"""
def __init__(
self,
origin_adj_mat: np.ndarray,
null_mask: np.ndarray,
target_index: int,
train_index: np.ndarray,
test_index: np.ndarray
) -> None:
self.adj_mat = origin_adj_mat
self.null_mask = null_mask
self.target_index = target_index
self.train_index = train_index
self.test_index = test_index
self.train_data, self.test_data = self._sample_train_test_data()
self.train_mask, self.test_mask = self._sample_train_test_mask()
def _sample_train_test_data(self) -> Tuple[torch.Tensor, torch.Tensor]:
"""Samples train and test data for the target index."""
test_data = np.zeros(self.adj_mat.shape, dtype=np.float32)
test_data[self.test_index, self.target_index] = 1
train_data = self.adj_mat - test_data
return torch.from_numpy(train_data), torch.from_numpy(test_data)
def _sample_train_test_mask(self) -> Tuple[torch.Tensor, torch.Tensor]:
"""Creates train and test masks with negative sampling."""
neg_value = np.ones(self.adj_mat.shape, dtype=np.float32) - self.adj_mat - self.null_mask
neg_test_mask = np.zeros(self.adj_mat.shape, dtype=np.float32)
target_neg_index = np.where(neg_value[:, self.target_index] == 1)[0]
target_neg_test_index = np.random.choice(target_neg_index, len(self.test_index), replace=False)
neg_test_mask[target_neg_test_index, self.target_index] = 1
neg_value[target_neg_test_index, self.target_index] = 0
train_mask = (self.train_data.numpy() + neg_value).astype(bool)
test_mask = (self.test_data.numpy() + neg_test_mask).astype(bool)
return torch.from_numpy(train_mask), torch.from_numpy(test_mask)
class TargetSampler:
"""
Samples train/test data and masks for multiple target indices.
"""
def __init__(
self,
response_mat: np.ndarray,
null_mask: np.ndarray,
target_indexes: np.ndarray,
pos_train_index: np.ndarray,
pos_test_index: np.ndarray
) -> None:
self.response_mat = response_mat
self.null_mask = null_mask
self.target_indexes = target_indexes
self.pos_train_index = pos_train_index
self.pos_test_index = pos_test_index
self.train_data, self.test_data = self._sample_train_test_data()
self.train_mask, self.test_mask = self._sample_train_test_mask()
def _sample_train_test_data(self) -> Tuple[torch.Tensor, torch.Tensor]:
"""Samples train and test data for multiple target indices."""
n_target = self.target_indexes.shape[0]
target_response = self.response_mat[:, self.target_indexes].reshape((-1, n_target))
train_data = self.response_mat.copy()
train_data[:, self.target_indexes] = 0
target_pos_value = sp.coo_matrix(target_response)
target_train_data = sp.coo_matrix(
(
target_pos_value.data[self.pos_train_index],
(target_pos_value.row[self.pos_train_index], target_pos_value.col[self.pos_train_index])
),
shape=target_response.shape
).toarray()
target_test_data = sp.coo_matrix(
(
target_pos_value.data[self.pos_test_index],
(target_pos_value.row[self.pos_test_index], target_pos_value.col[self.pos_test_index])
),
shape=target_response.shape
).toarray()
test_data = np.zeros(self.response_mat.shape, dtype=np.float32)
for i, value in enumerate(self.target_indexes):
train_data[:, value] = target_train_data[:, i]
test_data[:, value] = target_test_data[:, i]
return torch.from_numpy(train_data), torch.from_numpy(test_data)
def _sample_train_test_mask(self) -> Tuple[torch.Tensor, torch.Tensor]:
"""Creates train and test masks with negative sampling for target indices."""
target_response = self.response_mat[:, self.target_indexes]
target_ones = np.ones(target_response.shape, dtype=np.float32)
target_neg_value = target_ones - target_response - self.null_mask[:, self.target_indexes]
target_neg_value = sp.coo_matrix(target_neg_value)
ids = np.arange(target_neg_value.data.shape[0])
target_neg_test_index = np.random.choice(ids, self.pos_test_index.shape[0], replace=False)
target_neg_test_mask = sp.coo_matrix(
(
target_neg_value.data[target_neg_test_index],
(target_neg_value.row[target_neg_test_index], target_neg_value.col[target_neg_test_index])
),
shape=target_response.shape
).toarray()
neg_test_mask = np.zeros(self.response_mat.shape, dtype=np.float32)
for i, value in enumerate(self.target_indexes):
neg_test_mask[:, value] = target_neg_test_mask[:, i]
other_neg_value = (
np.ones(self.response_mat.shape, dtype=np.float32)
- neg_test_mask
- self.response_mat
- self.null_mask
)
test_mask = (self.test_data.numpy() + neg_test_mask).astype(bool)
train_mask = (self.train_data.numpy() + other_neg_value).astype(bool)
return torch.from_numpy(test_mask), torch.from_numpy(train_mask)
class ExterSampler:
"""
Samples train/test data and masks based on row indices.
"""
def __init__(
self,
original_adj_mat: np.ndarray,
null_mask: np.ndarray,
train_index: np.ndarray,
test_index: np.ndarray
) -> None:
self.adj_mat = original_adj_mat
self.null_mask = null_mask
self.train_index = train_index
self.test_index = test_index
self.train_data, self.test_data = self._sample_train_test_data()
self.train_mask, self.test_mask = self._sample_train_test_mask()
def _sample_train_test_data(self) -> Tuple[torch.Tensor, torch.Tensor]:
"""Samples train and test data based on row indices."""
test_data = self.adj_mat.copy()
test_data[self.train_index, :] = 0
train_data = self.adj_mat - test_data
return torch.from_numpy(train_data), torch.from_numpy(test_data)
def _sample_train_test_mask(self) -> Tuple[torch.Tensor, torch.Tensor]:
"""Creates train and test masks with negative sampling."""
neg_value = np.ones(self.adj_mat.shape, dtype=np.float32) - self.adj_mat - self.null_mask
neg_train = neg_value.copy()
neg_train[self.test_index, :] = 0
neg_test = neg_value.copy()
neg_test[self.train_index, :] = 0
train_mask = (self.train_data.numpy() + neg_train).astype(bool)
test_mask = (self.test_data.numpy() + neg_test).astype(bool)
return torch.from_numpy(train_mask), torch.from_numpy(test_mask)
class RegressionSampler(object):
def __init__(self, adj_mat_original, train_index, test_index, null_mask):
super(RegressionSampler, self).__init__()
if isinstance(adj_mat_original, torch.Tensor):
adj_mat_np = adj_mat_original.cpu().numpy()
else:
adj_mat_np = adj_mat_original.copy()
self.full_data = torch.FloatTensor(adj_mat_np)
rows, cols = adj_mat_np.shape
train_mask = np.zeros((rows, cols), dtype=bool)
test_mask = np.zeros((rows, cols), dtype=bool)
for idx in train_index:
row = idx // cols
col = idx % cols
if not null_mask[row, col]:
train_mask[row, col] = True
for idx in test_index:
row = idx // cols
col = idx % cols
if not null_mask[row, col]:
test_mask[row, col] = True
self.train_mask = torch.BoolTensor(train_mask)
self.test_mask = torch.BoolTensor(test_mask)
self.train_data = self.full_data.clone()
self.test_data = self.full_data.clone()
assert not torch.any(self.train_mask & self.test_mask), "Train and test masks have overlap!"
def get_train_indices(self):
indices = torch.nonzero(self.train_mask)
return indices
def get_test_indices(self):
indices = torch.nonzero(self.test_mask)
return indices
import torch
import numpy as np
import scipy.sparse as sp
from typing import Tuple, Optional
from utils import to_coo_matrix, to_tensor, mask


class RandomSampler:
"""
Samples edges from an adjacency matrix to create train/test sets.
Converts the training set into torch.Tensor format.
"""
def __init__(
self,
adj_mat_original: np.ndarray,
train_index: np.ndarray,
test_index: np.ndarray,
null_mask: np.ndarray
) -> None:
self.adj_mat = to_coo_matrix(adj_mat_original)
self.train_index = train_index
self.test_index = test_index
self.null_mask = null_mask

# Sample positive edges
self.train_pos = self._sample_edges(train_index)
self.test_pos = self._sample_edges(test_index)

# Sample negative edges
self.train_neg, self.test_neg = self._sample_negative_edges()

# Create masks
self.train_mask = mask(self.train_pos, self.train_neg, dtype=int)
self.test_mask = mask(self.test_pos, self.test_neg, dtype=bool)

# Convert to tensors
self.train_data = to_tensor(self.train_pos)
self.test_data = to_tensor(self.test_pos)

def _sample_edges(self, index: np.ndarray) -> sp.coo_matrix:
"""Samples edges from the adjacency matrix based on provided indices."""
row = self.adj_mat.row[index]
col = self.adj_mat.col[index]
data = self.adj_mat.data[index]
return sp.coo_matrix(
(data, (row, col)),
shape=self.adj_mat.shape
)

def _sample_negative_edges(self) -> Tuple[sp.coo_matrix, sp.coo_matrix]:
"""
Samples negative edges for training and testing.
Negative edges are those not present in the adjacency matrix.
"""
pos_adj_mat = self.null_mask + self.adj_mat.toarray()
neg_adj_mat = sp.coo_matrix(np.abs(pos_adj_mat - 1))
all_row, all_col, all_data = neg_adj_mat.row, neg_adj_mat.col, neg_adj_mat.data
indices = np.arange(all_data.shape[0])

# Sample negative test edges
test_n = self.test_index.shape[0]
test_neg_indices = np.random.choice(indices, test_n, replace=False)
test_row, test_col, test_data = (
all_row[test_neg_indices],
all_col[test_neg_indices],
all_data[test_neg_indices]
)
test_neg = sp.coo_matrix(
(test_data, (test_row, test_col)),
shape=self.adj_mat.shape
)

# Sample negative train edges
train_neg_indices = np.delete(indices, test_neg_indices)
train_row, train_col, train_data = (
all_row[train_neg_indices],
all_col[train_neg_indices],
all_data[train_neg_indices]
)
train_neg = sp.coo_matrix(
(train_data, (train_row, train_col)),
shape=self.adj_mat.shape
)

return train_neg, test_neg


class NewSampler:
"""
Samples train/test data and masks for a specific target dimension/index.
"""
def __init__(
self,
original_adj_mat: np.ndarray,
null_mask: np.ndarray,
target_dim: Optional[int],
target_index: int
) -> None:
self.adj_mat = original_adj_mat
self.null_mask = null_mask
self.dim = target_dim
self.target_index = target_index
self.train_data, self.test_data = self._sample_train_test_data()
self.train_mask, self.test_mask = self._sample_train_test_mask()

def _sample_target_test_index(self) -> np.ndarray:
"""Samples indices for positive test edges based on target dimension."""
if self.dim:
return np.where(self.adj_mat[:, self.target_index] == 1)[0]
return np.where(self.adj_mat[self.target_index, :] == 1)[0]

def _sample_train_test_data(self) -> Tuple[torch.Tensor, torch.Tensor]:
"""Samples train and test data based on target indices."""
test_data = np.zeros(self.adj_mat.shape, dtype=np.float32)
test_index = self._sample_target_test_index()

if self.dim:
test_data[test_index, self.target_index] = 1
else:
test_data[self.target_index, test_index] = 1

train_data = self.adj_mat - test_data
return torch.from_numpy(train_data), torch.from_numpy(test_data)

def _sample_train_test_mask(self) -> Tuple[torch.Tensor, torch.Tensor]:
"""Creates train and test masks, including negative sampling."""
test_index = self._sample_target_test_index()
neg_value = np.ones(self.adj_mat.shape, dtype=np.float32) - self.adj_mat - self.null_mask
neg_test_mask = np.zeros(self.adj_mat.shape, dtype=np.float32)

if self.dim:
target_neg_index = np.where(neg_value[:, self.target_index] == 1)[0]
else:
target_neg_index = np.where(neg_value[self.target_index, :] == 1)[0]

target_neg_test_index = (
np.random.choice(target_neg_index, len(test_index), replace=False)
if len(test_index) < len(target_neg_index)
else target_neg_index
)

if self.dim:
neg_test_mask[target_neg_test_index, self.target_index] = 1
neg_value[:, self.target_index] = 0
else:
neg_test_mask[self.target_index, target_neg_test_index] = 1
neg_value[self.target_index, :] = 0

train_mask = (self.train_data.numpy() + neg_value).astype(bool)
test_mask = (self.test_data.numpy() + neg_test_mask).astype(bool)
return torch.from_numpy(train_mask), torch.from_numpy(test_mask)


class SingleSampler:
"""
Samples train/test data and masks for a specific target index.
Returns results as torch.Tensor.
"""
def __init__(
self,
origin_adj_mat: np.ndarray,
null_mask: np.ndarray,
target_index: int,
train_index: np.ndarray,
test_index: np.ndarray
) -> None:
self.adj_mat = origin_adj_mat
self.null_mask = null_mask
self.target_index = target_index
self.train_index = train_index
self.test_index = test_index
self.train_data, self.test_data = self._sample_train_test_data()
self.train_mask, self.test_mask = self._sample_train_test_mask()

def _sample_train_test_data(self) -> Tuple[torch.Tensor, torch.Tensor]:
"""Samples train and test data for the target index."""
test_data = np.zeros(self.adj_mat.shape, dtype=np.float32)
test_data[self.test_index, self.target_index] = 1
train_data = self.adj_mat - test_data
return torch.from_numpy(train_data), torch.from_numpy(test_data)

def _sample_train_test_mask(self) -> Tuple[torch.Tensor, torch.Tensor]:
"""Creates train and test masks with negative sampling."""
neg_value = np.ones(self.adj_mat.shape, dtype=np.float32) - self.adj_mat - self.null_mask
neg_test_mask = np.zeros(self.adj_mat.shape, dtype=np.float32)

target_neg_index = np.where(neg_value[:, self.target_index] == 1)[0]
target_neg_test_index = np.random.choice(target_neg_index, len(self.test_index), replace=False)
neg_test_mask[target_neg_test_index, self.target_index] = 1
neg_value[target_neg_test_index, self.target_index] = 0

train_mask = (self.train_data.numpy() + neg_value).astype(bool)
test_mask = (self.test_data.numpy() + neg_test_mask).astype(bool)
return torch.from_numpy(train_mask), torch.from_numpy(test_mask)



class TargetSampler(object):
"""
Samples train/test data and masks for multiple target indices.
"""
def __init__(self, response_mat: np.ndarray, null_mask: np.ndarray, target_indexes: np.ndarray,
pos_train_index: np.ndarray, pos_test_index: np.ndarray):
self.response_mat = response_mat
self.null_mask = null_mask
self.target_indexes = target_indexes
self.pos_train_index = pos_train_index
self.pos_test_index = pos_test_index
self.train_data, self.test_data = self.sample_train_test_data()
self.train_mask, self.test_mask = self.sample_train_test_mask()

def sample_train_test_data(self):
n_target = self.target_indexes.shape[0]
target_response = self.response_mat[:, self.target_indexes].reshape((-1, n_target))
train_data = self.response_mat.copy()
train_data[:, self.target_indexes] = 0
target_pos_value = sp.coo_matrix(target_response)
target_train_data = sp.coo_matrix((target_pos_value.data[self.pos_train_index],
(target_pos_value.row[self.pos_train_index],
target_pos_value.col[self.pos_train_index])),
shape=target_response.shape).toarray()
target_test_data = sp.coo_matrix((target_pos_value.data[self.pos_test_index],
(target_pos_value.row[self.pos_test_index],
target_pos_value.col[self.pos_test_index])),
shape=target_response.shape).toarray()
test_data = np.zeros(self.response_mat.shape, dtype=np.float32)
for i, value in enumerate(self.target_indexes):
train_data[:, value] = target_train_data[:, i]
test_data[:, value] = target_test_data[:, i]
train_data = torch.from_numpy(train_data)
test_data = torch.from_numpy(test_data)
return train_data, test_data

def sample_train_test_mask(self):
target_response = self.response_mat[:, self.target_indexes]
target_ones = np.ones(target_response.shape, dtype=np.float32)
target_neg_value = target_ones - target_response - self.null_mask[:, self.target_indexes]
target_neg_value = sp.coo_matrix(target_neg_value)
ids = np.arange(target_neg_value.data.shape[0])
target_neg_test_index = np.random.choice(ids, self.pos_test_index.shape[0], replace=False)
target_neg_test_mask = sp.coo_matrix((target_neg_value.data[target_neg_test_index],
(target_neg_value.row[target_neg_test_index],
target_neg_value.col[target_neg_test_index])),
shape=target_response.shape).toarray()
neg_test_mask = np.zeros(self.response_mat.shape, dtype=np.float32)
for i, value in enumerate(self.target_indexes):
neg_test_mask[:, value] = target_neg_test_mask[:, i]
other_neg_value = np.ones(self.response_mat.shape,
dtype=np.float32) - neg_test_mask - self.response_mat - self.null_mask
test_mask = (self.test_data.numpy() + neg_test_mask).astype(bool)
train_mask = (self.train_data.numpy() + other_neg_value).astype(bool)
test_mask = torch.from_numpy(test_mask)
train_mask = torch.from_numpy(train_mask)
return train_mask, test_mask


class ExterSampler:
"""
Samples train/test data and masks based on row indices.
"""
def __init__(
self,
original_adj_mat: np.ndarray,
null_mask: np.ndarray,
train_index: np.ndarray,
test_index: np.ndarray
) -> None:
self.adj_mat = original_adj_mat
self.null_mask = null_mask
self.train_index = train_index
self.test_index = test_index
self.train_data, self.test_data = self._sample_train_test_data()
self.train_mask, self.test_mask = self._sample_train_test_mask()

def _sample_train_test_data(self) -> Tuple[torch.Tensor, torch.Tensor]:
"""Samples train and test data based on row indices."""
test_data = self.adj_mat.copy()
test_data[self.train_index, :] = 0
train_data = self.adj_mat - test_data
return torch.from_numpy(train_data), torch.from_numpy(test_data)

def _sample_train_test_mask(self) -> Tuple[torch.Tensor, torch.Tensor]:
"""Creates train and test masks with negative sampling."""
neg_value = np.ones(self.adj_mat.shape, dtype=np.float32) - self.adj_mat - self.null_mask
neg_train = neg_value.copy()
neg_train[self.test_index, :] = 0
neg_test = neg_value.copy()
neg_test[self.train_index, :] = 0

train_mask = (self.train_data.numpy() + neg_train).astype(bool)
test_mask = (self.test_data.numpy() + neg_test).astype(bool)
return torch.from_numpy(train_mask), torch.from_numpy(test_mask)
class RegressionSampler(object):
def __init__(self, adj_mat_original, train_index, test_index, null_mask):
super(RegressionSampler, self).__init__()
if isinstance(adj_mat_original, torch.Tensor):
adj_mat_np = adj_mat_original.cpu().numpy()
else:
adj_mat_np = adj_mat_original.copy()
self.full_data = torch.FloatTensor(adj_mat_np)

rows, cols = adj_mat_np.shape
train_mask = np.zeros((rows, cols), dtype=bool)
test_mask = np.zeros((rows, cols), dtype=bool)
for idx in train_index:
row = idx // cols
col = idx % cols
if not null_mask[row, col]:
train_mask[row, col] = True
for idx in test_index:
row = idx // cols
col = idx % cols
if not null_mask[row, col]:
test_mask[row, col] = True
self.train_mask = torch.BoolTensor(train_mask)
self.test_mask = torch.BoolTensor(test_mask)
self.train_data = self.full_data.clone()
self.test_data = self.full_data.clone()

assert not torch.any(self.train_mask & self.test_mask), "Train and test masks have overlap!"
def get_train_indices(self):
indices = torch.nonzero(self.train_mask)
return indices
def get_test_indices(self):
indices = torch.nonzero(self.test_mask)
return indices

Loading…
Cancel
Save