123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144 |
- # main_target.py
- import argparse
- import numpy as np
- import pandas as pd
- import scipy.sparse as sp
- from sklearn.model_selection import KFold
- from sklearn.metrics import roc_auc_score, average_precision_score, precision_score, recall_score, f1_score
- from model import DeepTraCDR, ModelOptimizer
- from utils import evaluate_auc, common_data_index
- from data_sampler import TargetSampler
- from data_loader import load_data
- import torch
- from torch.optim.lr_scheduler import OneCycleLR
-
- # Clear CUDA cache to optimize GPU memory usage
- torch.cuda.empty_cache()
-
-
- def main():
- """
- Main function to execute the DeepTraCDR model training and evaluation pipeline.
- Parses command-line arguments, loads data, performs k-fold cross-validation,
- and reports performance metrics.
- """
- # Initialize argument parser for command-line arguments
- parser = argparse.ArgumentParser(description="DeepTraCDR Advanced Model Training")
- parser.add_argument('-device', type=str, default="cuda:0" if torch.cuda.is_available() else "cpu",
- help="Device to run the model on (cuda:0 or cpu)")
- parser.add_argument('-data', type=str, default='gdsc', help="Dataset to use (gdsc or ccle)")
- parser.add_argument('--wd', type=float, default=1e-4, help="Weight decay for optimizer")
- parser.add_argument('--layer_size', nargs='+', type=int, default=[512],
- help="List of layer sizes for the GCN model")
- parser.add_argument('--gamma', type=float, default=15, help="Gamma parameter for model")
- parser.add_argument('--epochs', type=int, default=1000, help="Number of training epochs")
- parser.add_argument('--test_freq', type=int, default=50, help="Frequency of evaluation during training")
- parser.add_argument('--lr', type=float, default=0.0005, help="Learning rate for optimizer")
- args = parser.parse_args()
-
- # Load target drug data based on the specified dataset
- if args.data == "gdsc":
- target_drug_cids = np.array([5330286, 11338033, 24825971])
- # Load cell-drug binary matrix for GDSC dataset
- cell_drug = pd.read_csv("/media/external_16TB_1/ali_kianfar/Data/GDSC/cell_drug_binary.csv",
- index_col=0, header=0)
- cell_drug.columns = cell_drug.columns.astype(np.int32)
- drug_cids = cell_drug.columns.values
- cell_target_drug = np.array(cell_drug.loc[:, target_drug_cids], dtype=np.float32)
- target_pos_num = sp.coo_matrix(cell_target_drug).data.shape[0]
- target_indexes = common_data_index(drug_cids, target_drug_cids)
-
- elif args.data == "ccle":
- target_drug_cids = np.array([5330286])
- # Load cell-drug binary matrix for CCLE dataset
- cell_drug = pd.read_csv("/media/external_16TB_1/ali_kianfar/Data/CCLE/cell_drug_binary.csv",
- index_col=0, header=0)
- cell_drug.columns = cell_drug.columns.astype(np.int32)
- drug_cids = cell_drug.columns.values
- cell_target_drug = np.array(cell_drug.loc[:, target_drug_cids], dtype=np.float32)
- target_pos_num = sp.coo_matrix(cell_target_drug).data.shape[0]
- target_indexes = common_data_index(drug_cids, target_drug_cids)
-
- # Load dataset components including adjacency matrix, fingerprints, and expression data
- full_adj, drug_fingerprints, exprs, null_mask, pos_num, args = load_data(args)
- full_adj_np = full_adj.copy()
-
- # Log original adjacency matrix shape for debugging
- print(f"Original adj_mat shape: {full_adj.shape}")
-
- # Log shapes of loaded data for verification
- print("\n--- Data Shapes ---")
- print(f"Expression data shape: {exprs.shape}")
- print(f"Null mask shape: {null_mask.shape}")
-
- # Convert adjacency matrix to PyTorch tensor if it is a NumPy array
- if isinstance(full_adj, np.ndarray):
- full_adj = torch.from_numpy(full_adj).float().to(args.device)
-
- # Log converted adjacency matrix shape for verification
- print(f"Converted adj_mat shape: {full_adj.shape}")
-
- # Initialize k-fold cross-validation parameters
- k = 5
- n_kfolds = 5
- all_metrics = {
- 'auc': [],
- 'auprc': [],
- }
-
- # Perform k-fold cross-validation
- for n_kfold in range(n_kfolds):
- kfold = KFold(n_splits=k, shuffle=True, random_state=n_kfold)
- for fold, (train_idx, test_idx) in enumerate(kfold.split(np.arange(target_pos_num))):
- # Initialize data sampler for train/test split
- sampler = TargetSampler(response_mat=full_adj_np, null_mask=null_mask, target_indexes=target_indexes,
- pos_train_index=train_idx, pos_test_index=test_idx)
-
- # Initialize DeepTraCDR model
- model = DeepTraCDR(
- adj_mat=full_adj,
- cell_exprs=exprs,
- drug_fingerprints=drug_fingerprints,
- layer_size=args.layer_size,
- gamma=args.gamma,
- device=args.device
- )
-
- # Initialize optimizer for model training
- opt = ModelOptimizer(
- model=model,
- train_data=sampler.train_data,
- test_data=sampler.test_data,
- test_mask=sampler.test_mask,
- train_mask=sampler.train_mask,
- adj_matrix=full_adj,
- evaluate_fun=evaluate_auc,
- lr=args.lr,
- wd=args.wd,
- epochs=args.epochs,
- test_freq=args.test_freq,
- device=args.device
- )
-
- # Train model and retrieve evaluation metrics
- true, pred, best_auc, best_auprc = opt.train()
-
- # Store metrics for this fold
- all_metrics['auc'].append(best_auc)
- all_metrics['auprc'].append(best_auprc)
-
- # Log performance for the current fold
- print(f"Fold {n_kfold * k + fold + 1}: AUC={best_auc:.4f}, AUPRC={best_auprc:.4f}")
-
- # Calculate and log mean and standard deviation of metrics
- print(f"\nFinal Average Metrics:")
- for metric, values in all_metrics.items():
- mean = np.mean(values)
- std = np.std(values)
- print(f"{metric.upper()}: {mean:.4f} ± {std:.4f}")
-
-
- if __name__ == "__main__":
- # Set precision for matrix multiplication to optimize performance
- torch.set_float32_matmul_precision('high')
- main()
|