|
|
@@ -0,0 +1,105 @@ |
|
|
|
from transformers import AutoTokenizer, T5ForConditionalGeneration |
|
|
|
from Parsivar.normalizer import Normalizer |
|
|
|
|
|
|
|
class GE2PE(): |
|
|
|
|
|
|
|
def __init__(self, model_path = './content/checkpoint-320', GPU = False, dictionary = None): |
|
|
|
""" |
|
|
|
model_path: path to where the GE2PE transformer is saved. |
|
|
|
GPU: boolean indicating use of GPU in generation. |
|
|
|
dictionary: a dictionary for self-defined words. |
|
|
|
""" |
|
|
|
|
|
|
|
self.GPU = GPU |
|
|
|
self.model = T5ForConditionalGeneration.from_pretrained(model_path) |
|
|
|
if self.GPU: |
|
|
|
self.model = self.model.cuda() |
|
|
|
self.tokenizer = AutoTokenizer.from_pretrained(model_path) |
|
|
|
self.dictionary = dictionary |
|
|
|
self.norma = Normalizer(pinglish_conversion_needed=True) |
|
|
|
|
|
|
|
def is_vowel(self, char): |
|
|
|
return (char in ['a', '/', 'i', 'e', 'u', 'o']) |
|
|
|
|
|
|
|
def rules(self, grapheme, phoneme): |
|
|
|
grapheme = grapheme.replace('آ', 'ءا') |
|
|
|
words = grapheme.split(' ') |
|
|
|
prons = phoneme.replace('1', '').split(' ') |
|
|
|
if len(words) != len(prons): |
|
|
|
return phoneme |
|
|
|
for i in range(len(words)): |
|
|
|
if 'ِ' not in words[i] and 'ُ' not in words[i] and 'َ' not in words[i]: |
|
|
|
continue |
|
|
|
for j in range(len(words[i])): |
|
|
|
if words[i][j] == 'َ': |
|
|
|
if j == len(words[i]) - 1 and prons[i][-1] != '/': |
|
|
|
prons[i] = prons[i] + '/' |
|
|
|
elif self.is_vowel(prons[i][j]): |
|
|
|
prons[i] = prons[i][:j] + '/' + prons[i][j+1:] |
|
|
|
else: |
|
|
|
prons[i] = prons[i][:j] + '/' + prons[i][j:] |
|
|
|
if words[i][j] == 'ِ': |
|
|
|
if j == len(words[i]) - 1 and prons[i][-1] != 'e': |
|
|
|
prons[i] = prons[i] + 'e' |
|
|
|
elif self.is_vowel(prons[i][j]): |
|
|
|
prons[i] = prons[i][:j] + 'e' + prons[i][j+1:] |
|
|
|
else: |
|
|
|
prons[i] = prons[i][:j] + 'e' + prons[i][j:] |
|
|
|
if words[i][j] == 'ُ': |
|
|
|
if j == len(words[i]) - 1 and prons[i][-1] != 'o': |
|
|
|
prons[i] = prons[i] + 'o' |
|
|
|
elif self.is_vowel(prons[i][j]): |
|
|
|
prons[i] = prons[i][:j] + 'o' + prons[i][j+1:] |
|
|
|
else: |
|
|
|
prons[i] = prons[i][:j] + 'o' + prons[i][j:] |
|
|
|
return ' '.join(prons) |
|
|
|
|
|
|
|
def lexicon(self, grapheme, phoneme): |
|
|
|
words = grapheme.split(' ') |
|
|
|
prons = phoneme.split(' ') |
|
|
|
output = prons |
|
|
|
for i in range(len(words)): |
|
|
|
try: |
|
|
|
output[i] = self.dictionary[words[i]] |
|
|
|
if prons[i][-1] == '1' and output[i][-1] != 'e': |
|
|
|
output[i] = output[i] + 'e1' |
|
|
|
elif prons[i][-1] == '1' and output[i][-1] == 'e': |
|
|
|
output[i] = output[i] + 'ye1' |
|
|
|
except: |
|
|
|
pass |
|
|
|
return ' '.join(output) |
|
|
|
|
|
|
|
def generate(self, input_list, batch_size = 10, use_rules = False, use_dict = False): |
|
|
|
""" |
|
|
|
input_list: list of sentences to be phonemized. |
|
|
|
batch_size: inference batch_size |
|
|
|
use_rules: boolean indicating the use of rules to apply short vowels. |
|
|
|
use_dict: boolean indicating the use of self-defined dictionary. |
|
|
|
returns the list of phonemized sentences. |
|
|
|
""" |
|
|
|
|
|
|
|
output_list = [] |
|
|
|
input_list = [self.norma.normalize(text).replace('ك', 'ک') for text in input_list] |
|
|
|
input = input_list |
|
|
|
input_list = [text.replace('ِ', '').replace('ُ', '').replace('َ', '') for text in input_list] |
|
|
|
for i in range(0,len(input_list),batch_size): |
|
|
|
in_ids = self.tokenizer(input_list[i:i+batch_size], padding=True,add_special_tokens=False, return_attention_mask=True,return_tensors='pt') |
|
|
|
if self.GPU: |
|
|
|
out_ids = self.model.generate(in_ids["input_ids"].cuda(), attention_mask=in_ids["attention_mask"].cuda(), num_beams=5, |
|
|
|
min_length= 1, max_length=512, early_stopping=True,) |
|
|
|
else: |
|
|
|
out_ids = self.model.generate(in_ids["input_ids"], attention_mask=in_ids["attention_mask"], num_beams=5, |
|
|
|
min_length= 1, max_length=512, early_stopping=True,) |
|
|
|
output_list += self.tokenizer.batch_decode(out_ids, skip_special_tokens=True) |
|
|
|
|
|
|
|
|
|
|
|
if use_dict: |
|
|
|
for i in range(len(input_list)): |
|
|
|
output_list[i] = self.lexicon(input_list[i], output_list[i]) |
|
|
|
|
|
|
|
if use_rules: |
|
|
|
for i in range(len(input_list)): |
|
|
|
output_list[i] = self.rules(input[i], output_list[i]) |
|
|
|
|
|
|
|
output_list = [i.strip() for i in output_list] |
|
|
|
return output_list |