Browse Source

add assets

main
MahtaFetrat 2 weeks ago
parent
commit
86780b70f8
2 changed files with 105 additions and 0 deletions
  1. 105
    0
      assets/GE2PE.py
  2. BIN
      assets/Parsivar.zip

+ 105
- 0
assets/GE2PE.py View File

@@ -0,0 +1,105 @@
from transformers import AutoTokenizer, T5ForConditionalGeneration
from Parsivar.normalizer import Normalizer

class GE2PE():

def __init__(self, model_path = './content/checkpoint-320', GPU = False, dictionary = None):
"""
model_path: path to where the GE2PE transformer is saved.
GPU: boolean indicating use of GPU in generation.
dictionary: a dictionary for self-defined words.
"""
self.GPU = GPU
self.model = T5ForConditionalGeneration.from_pretrained(model_path)
if self.GPU:
self.model = self.model.cuda()
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
self.dictionary = dictionary
self.norma = Normalizer(pinglish_conversion_needed=True)
def is_vowel(self, char):
return (char in ['a', '/', 'i', 'e', 'u', 'o'])
def rules(self, grapheme, phoneme):
grapheme = grapheme.replace('آ', 'ءا')
words = grapheme.split(' ')
prons = phoneme.replace('1', '').split(' ')
if len(words) != len(prons):
return phoneme
for i in range(len(words)):
if 'ِ' not in words[i] and 'ُ' not in words[i] and 'َ' not in words[i]:
continue
for j in range(len(words[i])):
if words[i][j] == 'َ':
if j == len(words[i]) - 1 and prons[i][-1] != '/':
prons[i] = prons[i] + '/'
elif self.is_vowel(prons[i][j]):
prons[i] = prons[i][:j] + '/' + prons[i][j+1:]
else:
prons[i] = prons[i][:j] + '/' + prons[i][j:]
if words[i][j] == 'ِ':
if j == len(words[i]) - 1 and prons[i][-1] != 'e':
prons[i] = prons[i] + 'e'
elif self.is_vowel(prons[i][j]):
prons[i] = prons[i][:j] + 'e' + prons[i][j+1:]
else:
prons[i] = prons[i][:j] + 'e' + prons[i][j:]
if words[i][j] == 'ُ':
if j == len(words[i]) - 1 and prons[i][-1] != 'o':
prons[i] = prons[i] + 'o'
elif self.is_vowel(prons[i][j]):
prons[i] = prons[i][:j] + 'o' + prons[i][j+1:]
else:
prons[i] = prons[i][:j] + 'o' + prons[i][j:]
return ' '.join(prons)

def lexicon(self, grapheme, phoneme):
words = grapheme.split(' ')
prons = phoneme.split(' ')
output = prons
for i in range(len(words)):
try:
output[i] = self.dictionary[words[i]]
if prons[i][-1] == '1' and output[i][-1] != 'e':
output[i] = output[i] + 'e1'
elif prons[i][-1] == '1' and output[i][-1] == 'e':
output[i] = output[i] + 'ye1'
except:
pass
return ' '.join(output)

def generate(self, input_list, batch_size = 10, use_rules = False, use_dict = False):
"""
input_list: list of sentences to be phonemized.
batch_size: inference batch_size
use_rules: boolean indicating the use of rules to apply short vowels.
use_dict: boolean indicating the use of self-defined dictionary.
returns the list of phonemized sentences.
"""
output_list = []
input_list = [self.norma.normalize(text).replace('ك', 'ک') for text in input_list]
input = input_list
input_list = [text.replace('ِ', '').replace('ُ', '').replace('َ', '') for text in input_list]
for i in range(0,len(input_list),batch_size):
in_ids = self.tokenizer(input_list[i:i+batch_size], padding=True,add_special_tokens=False, return_attention_mask=True,return_tensors='pt')
if self.GPU:
out_ids = self.model.generate(in_ids["input_ids"].cuda(), attention_mask=in_ids["attention_mask"].cuda(), num_beams=5,
min_length= 1, max_length=512, early_stopping=True,)
else:
out_ids = self.model.generate(in_ids["input_ids"], attention_mask=in_ids["attention_mask"], num_beams=5,
min_length= 1, max_length=512, early_stopping=True,)
output_list += self.tokenizer.batch_decode(out_ids, skip_special_tokens=True)
if use_dict:
for i in range(len(input_list)):
output_list[i] = self.lexicon(input_list[i], output_list[i])

if use_rules:
for i in range(len(input_list)):
output_list[i] = self.rules(input[i], output_list[i])

output_list = [i.strip() for i in output_list]
return output_list

BIN
assets/Parsivar.zip View File


Loading…
Cancel
Save