| from transformers import AutoTokenizer, T5ForConditionalGeneration | |||||
| from Parsivar.normalizer import Normalizer | |||||
| class GE2PE(): | |||||
| def __init__(self, model_path = './content/checkpoint-320', GPU = False, dictionary = None): | |||||
| """ | |||||
| model_path: path to where the GE2PE transformer is saved. | |||||
| GPU: boolean indicating use of GPU in generation. | |||||
| dictionary: a dictionary for self-defined words. | |||||
| """ | |||||
| self.GPU = GPU | |||||
| self.model = T5ForConditionalGeneration.from_pretrained(model_path) | |||||
| if self.GPU: | |||||
| self.model = self.model.cuda() | |||||
| self.tokenizer = AutoTokenizer.from_pretrained(model_path) | |||||
| self.dictionary = dictionary | |||||
| self.norma = Normalizer(pinglish_conversion_needed=True) | |||||
| def is_vowel(self, char): | |||||
| return (char in ['a', '/', 'i', 'e', 'u', 'o']) | |||||
| def rules(self, grapheme, phoneme): | |||||
| grapheme = grapheme.replace('آ', 'ءا') | |||||
| words = grapheme.split(' ') | |||||
| prons = phoneme.replace('1', '').split(' ') | |||||
| if len(words) != len(prons): | |||||
| return phoneme | |||||
| for i in range(len(words)): | |||||
| if 'ِ' not in words[i] and 'ُ' not in words[i] and 'َ' not in words[i]: | |||||
| continue | |||||
| for j in range(len(words[i])): | |||||
| if words[i][j] == 'َ': | |||||
| if j == len(words[i]) - 1 and prons[i][-1] != '/': | |||||
| prons[i] = prons[i] + '/' | |||||
| elif self.is_vowel(prons[i][j]): | |||||
| prons[i] = prons[i][:j] + '/' + prons[i][j+1:] | |||||
| else: | |||||
| prons[i] = prons[i][:j] + '/' + prons[i][j:] | |||||
| if words[i][j] == 'ِ': | |||||
| if j == len(words[i]) - 1 and prons[i][-1] != 'e': | |||||
| prons[i] = prons[i] + 'e' | |||||
| elif self.is_vowel(prons[i][j]): | |||||
| prons[i] = prons[i][:j] + 'e' + prons[i][j+1:] | |||||
| else: | |||||
| prons[i] = prons[i][:j] + 'e' + prons[i][j:] | |||||
| if words[i][j] == 'ُ': | |||||
| if j == len(words[i]) - 1 and prons[i][-1] != 'o': | |||||
| prons[i] = prons[i] + 'o' | |||||
| elif self.is_vowel(prons[i][j]): | |||||
| prons[i] = prons[i][:j] + 'o' + prons[i][j+1:] | |||||
| else: | |||||
| prons[i] = prons[i][:j] + 'o' + prons[i][j:] | |||||
| return ' '.join(prons) | |||||
| def lexicon(self, grapheme, phoneme): | |||||
| words = grapheme.split(' ') | |||||
| prons = phoneme.split(' ') | |||||
| output = prons | |||||
| for i in range(len(words)): | |||||
| try: | |||||
| output[i] = self.dictionary[words[i]] | |||||
| if prons[i][-1] == '1' and output[i][-1] != 'e': | |||||
| output[i] = output[i] + 'e1' | |||||
| elif prons[i][-1] == '1' and output[i][-1] == 'e': | |||||
| output[i] = output[i] + 'ye1' | |||||
| except: | |||||
| pass | |||||
| return ' '.join(output) | |||||
| def generate(self, input_list, batch_size = 10, use_rules = False, use_dict = False): | |||||
| """ | |||||
| input_list: list of sentences to be phonemized. | |||||
| batch_size: inference batch_size | |||||
| use_rules: boolean indicating the use of rules to apply short vowels. | |||||
| use_dict: boolean indicating the use of self-defined dictionary. | |||||
| returns the list of phonemized sentences. | |||||
| """ | |||||
| output_list = [] | |||||
| input_list = [self.norma.normalize(text).replace('ك', 'ک') for text in input_list] | |||||
| input = input_list | |||||
| input_list = [text.replace('ِ', '').replace('ُ', '').replace('َ', '') for text in input_list] | |||||
| for i in range(0,len(input_list),batch_size): | |||||
| in_ids = self.tokenizer(input_list[i:i+batch_size], padding=True,add_special_tokens=False, return_attention_mask=True,return_tensors='pt') | |||||
| if self.GPU: | |||||
| out_ids = self.model.generate(in_ids["input_ids"].cuda(), attention_mask=in_ids["attention_mask"].cuda(), num_beams=5, | |||||
| min_length= 1, max_length=512, early_stopping=True,) | |||||
| else: | |||||
| out_ids = self.model.generate(in_ids["input_ids"], attention_mask=in_ids["attention_mask"], num_beams=5, | |||||
| min_length= 1, max_length=512, early_stopping=True,) | |||||
| output_list += self.tokenizer.batch_decode(out_ids, skip_special_tokens=True) | |||||
| if use_dict: | |||||
| for i in range(len(input_list)): | |||||
| output_list[i] = self.lexicon(input_list[i], output_list[i]) | |||||
| if use_rules: | |||||
| for i in range(len(input_list)): | |||||
| output_list[i] = self.rules(input[i], output_list[i]) | |||||
| output_list = [i.strip() for i in output_list] | |||||
| return output_list |