123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105 |
- from transformers import AutoTokenizer, T5ForConditionalGeneration
- from Parsivar.normalizer import Normalizer
-
- class GE2PE():
-
- def __init__(self, model_path = './content/checkpoint-320', GPU = False, dictionary = None):
- """
- model_path: path to where the GE2PE transformer is saved.
- GPU: boolean indicating use of GPU in generation.
- dictionary: a dictionary for self-defined words.
- """
-
- self.GPU = GPU
- self.model = T5ForConditionalGeneration.from_pretrained(model_path)
- if self.GPU:
- self.model = self.model.cuda()
- self.tokenizer = AutoTokenizer.from_pretrained(model_path)
- self.dictionary = dictionary
- self.norma = Normalizer(pinglish_conversion_needed=True)
-
- def is_vowel(self, char):
- return (char in ['a', '/', 'i', 'e', 'u', 'o'])
-
- def rules(self, grapheme, phoneme):
- grapheme = grapheme.replace('آ', 'ءا')
- words = grapheme.split(' ')
- prons = phoneme.replace('1', '').split(' ')
- if len(words) != len(prons):
- return phoneme
- for i in range(len(words)):
- if 'ِ' not in words[i] and 'ُ' not in words[i] and 'َ' not in words[i]:
- continue
- for j in range(len(words[i])):
- if words[i][j] == 'َ':
- if j == len(words[i]) - 1 and prons[i][-1] != '/':
- prons[i] = prons[i] + '/'
- elif self.is_vowel(prons[i][j]):
- prons[i] = prons[i][:j] + '/' + prons[i][j+1:]
- else:
- prons[i] = prons[i][:j] + '/' + prons[i][j:]
- if words[i][j] == 'ِ':
- if j == len(words[i]) - 1 and prons[i][-1] != 'e':
- prons[i] = prons[i] + 'e'
- elif self.is_vowel(prons[i][j]):
- prons[i] = prons[i][:j] + 'e' + prons[i][j+1:]
- else:
- prons[i] = prons[i][:j] + 'e' + prons[i][j:]
- if words[i][j] == 'ُ':
- if j == len(words[i]) - 1 and prons[i][-1] != 'o':
- prons[i] = prons[i] + 'o'
- elif self.is_vowel(prons[i][j]):
- prons[i] = prons[i][:j] + 'o' + prons[i][j+1:]
- else:
- prons[i] = prons[i][:j] + 'o' + prons[i][j:]
- return ' '.join(prons)
-
- def lexicon(self, grapheme, phoneme):
- words = grapheme.split(' ')
- prons = phoneme.split(' ')
- output = prons
- for i in range(len(words)):
- try:
- output[i] = self.dictionary[words[i]]
- if prons[i][-1] == '1' and output[i][-1] != 'e':
- output[i] = output[i] + 'e1'
- elif prons[i][-1] == '1' and output[i][-1] == 'e':
- output[i] = output[i] + 'ye1'
- except:
- pass
- return ' '.join(output)
-
- def generate(self, input_list, batch_size = 10, use_rules = False, use_dict = False):
- """
- input_list: list of sentences to be phonemized.
- batch_size: inference batch_size
- use_rules: boolean indicating the use of rules to apply short vowels.
- use_dict: boolean indicating the use of self-defined dictionary.
- returns the list of phonemized sentences.
- """
-
- output_list = []
- input_list = [self.norma.normalize(text).replace('ك', 'ک') for text in input_list]
- input = input_list
- input_list = [text.replace('ِ', '').replace('ُ', '').replace('َ', '') for text in input_list]
- for i in range(0,len(input_list),batch_size):
- in_ids = self.tokenizer(input_list[i:i+batch_size], padding=True,add_special_tokens=False, return_attention_mask=True,return_tensors='pt')
- if self.GPU:
- out_ids = self.model.generate(in_ids["input_ids"].cuda(), attention_mask=in_ids["attention_mask"].cuda(), num_beams=5,
- min_length= 1, max_length=512, early_stopping=True,)
- else:
- out_ids = self.model.generate(in_ids["input_ids"], attention_mask=in_ids["attention_mask"], num_beams=5,
- min_length= 1, max_length=512, early_stopping=True,)
- output_list += self.tokenizer.batch_decode(out_ids, skip_special_tokens=True)
-
-
- if use_dict:
- for i in range(len(input_list)):
- output_list[i] = self.lexicon(input_list[i], output_list[i])
-
- if use_rules:
- for i in range(len(input_list)):
- output_list[i] = self.rules(input[i], output_list[i])
-
- output_list = [i.strip() for i in output_list]
- return output_list
|