123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924 |
- {
- "cells": [
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "device(type='cuda', index=0)"
- ]
- },
- "execution_count": 1,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "\n",
- "import torch\n",
- "import os\n",
- "\n",
- "from pytorch_adapt.adapters import DANN, MCD, VADA, CDAN, RTN, ADDA, Aligner, SymNets\n",
- "from pytorch_adapt.containers import Models, Optimizers, LRSchedulers\n",
- "from pytorch_adapt.models import Discriminator, office31C, office31G\n",
- "from pytorch_adapt.containers import Misc\n",
- "from pytorch_adapt.layers import RandomizedDotProduct\n",
- "from pytorch_adapt.layers import MultipleModels, CORALLoss, MMDLoss\n",
- "from pytorch_adapt.utils import common_functions\n",
- "from pytorch_adapt.containers import LRSchedulers\n",
- "\n",
- "from classifier_adapter import ClassifierAdapter\n",
- "\n",
- "from utils import HP, DAModels\n",
- "\n",
- "import copy\n",
- "\n",
- "import matplotlib.pyplot as plt\n",
- "import torch\n",
- "import os\n",
- "import gc\n",
- "from datetime import datetime\n",
- "\n",
- "from pytorch_adapt.datasets import DataloaderCreator, get_office31\n",
- "from pytorch_adapt.frameworks.ignite import CheckpointFnCreator, Ignite\n",
- "from pytorch_adapt.validators import AccuracyValidator, IMValidator, ScoreHistory, DiversityValidator, EntropyValidator, MultipleValidators\n",
- "\n",
- "from models import get_model\n",
- "from utils import DAModels\n",
- "\n",
- "from vis_hook import VizHook\n",
- "device = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu\")\n",
- "device"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Namespace(batch_size=64, data_root='./datasets/pytorch-adapt/', download=False, gamma=0.99, hp_tune=False, initial_trial=0, lr=0.0001, max_epochs=1, model_names=['DANN'], num_workers=1, patience=2, results_root='./results/', root='./', source=None, target=None, trials_count=1, vishook_frequency=5)\n"
- ]
- }
- ],
- "source": [
- "import argparse\n",
- "parser = argparse.ArgumentParser()\n",
- "parser.add_argument('--max_epochs', default=1, type=int)\n",
- "parser.add_argument('--patience', default=2, type=int)\n",
- "parser.add_argument('--batch_size', default=64, type=int)\n",
- "parser.add_argument('--num_workers', default=1, type=int)\n",
- "parser.add_argument('--trials_count', default=1, type=int)\n",
- "parser.add_argument('--initial_trial', default=0, type=int)\n",
- "parser.add_argument('--download', default=False, type=bool)\n",
- "parser.add_argument('--root', default=\"./\")\n",
- "parser.add_argument('--data_root', default=\"./datasets/pytorch-adapt/\")\n",
- "parser.add_argument('--results_root', default=\"./results/\")\n",
- "parser.add_argument('--model_names', default=[\"DANN\"], nargs='+')\n",
- "parser.add_argument('--lr', default=0.0001, type=float)\n",
- "parser.add_argument('--gamma', default=0.99, type=float)\n",
- "parser.add_argument('--hp_tune', default=False, type=bool)\n",
- "parser.add_argument('--source', default=None)\n",
- "parser.add_argument('--target', default=None) \n",
- "parser.add_argument('--vishook_frequency', default=5, type=int)\n",
- " \n",
- "\n",
- "args = parser.parse_args(\"\")\n",
- "print(args)\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 45,
- "metadata": {},
- "outputs": [],
- "source": [
- "source_domain = 'amazon'\n",
- "target_domain = 'webcam'\n",
- "datasets = get_office31([source_domain], [],\n",
- " folder=args.data_root,\n",
- " return_target_with_labels=True,\n",
- " download=args.download)\n",
- "\n",
- "dc = DataloaderCreator(batch_size=args.batch_size,\n",
- " num_workers=args.num_workers,\n",
- " )\n",
- "\n",
- "weights_root = os.path.join(args.data_root, \"weights\")\n",
- "\n",
- "G = office31G(pretrained=True, model_dir=weights_root).to(device)\n",
- "C = office31C(domain=source_domain, pretrained=True,\n",
- " model_dir=weights_root).to(device)\n",
- "\n",
- "\n",
- "optimizers = Optimizers((torch.optim.Adam, {\"lr\": 1e-4}))\n",
- "lr_schedulers = LRSchedulers((torch.optim.lr_scheduler.ExponentialLR, {\"gamma\": 0.99})) \n",
- "\n",
- "models = Models({\"G\": G, \"C\": C})\n",
- "adapter= ClassifierAdapter(models=models, optimizers=optimizers, lr_schedulers=lr_schedulers)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "cuda:0\n"
- ]
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "f28aaf5a334d4f91a9beb21e714c43a5",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "[1/35] 3%|2 |it [00:00<?]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "7131d8b9099c4d0a95155595919c55f5",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "[1/9] 11%|#1 |it [00:00<?]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "best_score=None, best_epoch=None\n"
- ]
- },
- {
- "ename": "AttributeError",
- "evalue": "'Namespace' object has no attribute 'dataroot'",
- "output_type": "error",
- "traceback": [
- "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
- "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)",
- "Cell \u001b[0;32mIn[39], line 31\u001b[0m\n\u001b[1;32m 28\u001b[0m plt\u001b[39m.\u001b[39msavefig(\u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39m{\u001b[39;00moutput_dir\u001b[39m}\u001b[39;00m\u001b[39m/val_accuracy.png\u001b[39m\u001b[39m\"\u001b[39m)\n\u001b[1;32m 29\u001b[0m plt\u001b[39m.\u001b[39mclose(\u001b[39m'\u001b[39m\u001b[39mall\u001b[39m\u001b[39m'\u001b[39m)\n\u001b[0;32m---> 31\u001b[0m datasets \u001b[39m=\u001b[39m get_office31([source_domain], [target_domain], folder\u001b[39m=\u001b[39margs\u001b[39m.\u001b[39;49mdataroot, return_target_with_labels\u001b[39m=\u001b[39m\u001b[39mTrue\u001b[39;00m)\n\u001b[1;32m 32\u001b[0m dc \u001b[39m=\u001b[39m DataloaderCreator(batch_size\u001b[39m=\u001b[39margs\u001b[39m.\u001b[39mbatch_size, num_workers\u001b[39m=\u001b[39margs\u001b[39m.\u001b[39mnum_workers, all_val\u001b[39m=\u001b[39m\u001b[39mTrue\u001b[39;00m)\n\u001b[1;32m 34\u001b[0m validator \u001b[39m=\u001b[39m AccuracyValidator(key_map\u001b[39m=\u001b[39m{\u001b[39m\"\u001b[39m\u001b[39msrc_val\u001b[39m\u001b[39m\"\u001b[39m: \u001b[39m\"\u001b[39m\u001b[39msrc_val\u001b[39m\u001b[39m\"\u001b[39m})\n",
- "\u001b[0;31mAttributeError\u001b[0m: 'Namespace' object has no attribute 'dataroot'"
- ]
- }
- ],
- "source": [
- "\n",
- "output_dir = \"tmp\"\n",
- "checkpoint_fn = CheckpointFnCreator(dirname=f\"{output_dir}/saved_models\", require_empty=False)\n",
- "\n",
- "sourceAccuracyValidator = AccuracyValidator()\n",
- "val_hooks = [ScoreHistory(sourceAccuracyValidator)]\n",
- "\n",
- "trainer = Ignite(\n",
- " adapter, val_hooks=val_hooks, checkpoint_fn=checkpoint_fn, device=device\n",
- ")\n",
- "print(trainer.device)\n",
- "\n",
- "early_stopper_kwargs = {\"patience\": args.patience}\n",
- "\n",
- "start_time = datetime.now()\n",
- "\n",
- "best_score, best_epoch = trainer.run(\n",
- " datasets, dataloader_creator=dc, max_epochs=args.max_epochs, early_stopper_kwargs=early_stopper_kwargs\n",
- ")\n",
- "\n",
- "end_time = datetime.now()\n",
- "training_time = end_time - start_time\n",
- "\n",
- "print(f\"best_score={best_score}, best_epoch={best_epoch}\")\n",
- "\n",
- "plt.plot(val_hooks[0].score_history, label='source')\n",
- "plt.title(\"val accuracy\")\n",
- "plt.legend()\n",
- "plt.savefig(f\"{output_dir}/val_accuracy.png\")\n",
- "plt.close('all')\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "173d54ab994d4abda6e4f0897ad96c49",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "[1/9] 11%|#1 |it [00:00<?]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Source acc: 0.868794322013855\n"
- ]
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "13b4a1ccc3b34456b68c73357d14bc21",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "[1/3] 33%|###3 |it [00:00<?]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Target acc: 0.74842768907547\n",
- "---------\n"
- ]
- }
- ],
- "source": [
- "\n",
- "datasets = get_office31([source_domain], [target_domain], folder=args.data_root, return_target_with_labels=True)\n",
- "dc = DataloaderCreator(batch_size=args.batch_size, num_workers=args.num_workers, all_val=True)\n",
- "\n",
- "validator = AccuracyValidator(key_map={\"src_val\": \"src_val\"})\n",
- "src_score = trainer.evaluate_best_model(datasets, validator, dc)\n",
- "print(\"Source acc:\", src_score)\n",
- "\n",
- "validator = AccuracyValidator(key_map={\"target_val_with_labels\": \"src_val\"})\n",
- "target_score = trainer.evaluate_best_model(datasets, validator, dc)\n",
- "print(\"Target acc:\", target_score)\n",
- "print(\"---------\")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "C2 = copy.deepcopy(C) "
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 93,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "cuda:0\n"
- ]
- }
- ],
- "source": [
- "source_domain = 'amazon'\n",
- "target_domain = 'webcam'\n",
- "G = office31G(pretrained=False).to(device)\n",
- "C = office31C(pretrained=False).to(device)\n",
- "\n",
- "\n",
- "optimizers = Optimizers((torch.optim.Adam, {\"lr\": 1e-4}))\n",
- "lr_schedulers = LRSchedulers((torch.optim.lr_scheduler.ExponentialLR, {\"gamma\": 0.99})) \n",
- "\n",
- "models = Models({\"G\": G, \"C\": C})\n",
- "adapter= ClassifierAdapter(models=models, optimizers=optimizers, lr_schedulers=lr_schedulers)\n",
- "\n",
- "\n",
- "output_dir = \"tmp\"\n",
- "checkpoint_fn = CheckpointFnCreator(dirname=f\"{output_dir}/saved_models\", require_empty=False)\n",
- "\n",
- "sourceAccuracyValidator = AccuracyValidator()\n",
- "val_hooks = [ScoreHistory(sourceAccuracyValidator)]\n",
- "\n",
- "new_trainer = Ignite(\n",
- " adapter, val_hooks=val_hooks, checkpoint_fn=checkpoint_fn, device=device\n",
- ")\n",
- "print(trainer.device)\n",
- "\n",
- "from pytorch_adapt.frameworks.ignite import (\n",
- " CheckpointFnCreator,\n",
- " IgniteValHookWrapper,\n",
- " checkpoint_utils,\n",
- ")\n",
- "\n",
- "objs = [\n",
- " {\n",
- " \"engine\": new_trainer.trainer,\n",
- " \"validator\": new_trainer.validator,\n",
- " \"val_hook0\": val_hooks[0],\n",
- " **checkpoint_utils.adapter_to_dict(new_trainer.adapter),\n",
- " }\n",
- " ]\n",
- " \n",
- "# best_score, best_epoch = trainer.run(\n",
- "# datasets, dataloader_creator=dc, max_epochs=args.max_epochs, early_stopper_kwargs=early_stopper_kwargs\n",
- "# )\n",
- "\n",
- "for to_load in objs:\n",
- " checkpoint_fn.load_best_checkpoint(to_load)\n",
- "\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 94,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "32f01ff7ea254739909e4567a133b00a",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "[1/9] 11%|#1 |it [00:00<?]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Source acc: 0.868794322013855\n"
- ]
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "cef345c05e5e46eb9fc0e1cc40b02435",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "[1/3] 33%|###3 |it [00:00<?]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Target acc: 0.74842768907547\n",
- "---------\n"
- ]
- }
- ],
- "source": [
- "\n",
- "datasets = get_office31([source_domain], [target_domain], folder=args.data_root, return_target_with_labels=True)\n",
- "dc = DataloaderCreator(batch_size=args.batch_size, num_workers=args.num_workers, all_val=True)\n",
- "\n",
- "validator = AccuracyValidator(key_map={\"src_val\": \"src_val\"})\n",
- "src_score = new_trainer.evaluate_best_model(datasets, validator, dc)\n",
- "print(\"Source acc:\", src_score)\n",
- "\n",
- "validator = AccuracyValidator(key_map={\"target_val_with_labels\": \"src_val\"})\n",
- "target_score = new_trainer.evaluate_best_model(datasets, validator, dc)\n",
- "print(\"Target acc:\", target_score)\n",
- "print(\"---------\")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 89,
- "metadata": {},
- "outputs": [],
- "source": [
- "\n",
- "datasets = get_office31([source_domain], [target_domain],\n",
- " folder=args.data_root,\n",
- " return_target_with_labels=True,\n",
- " download=args.download)\n",
- " \n",
- "dc = DataloaderCreator(batch_size=args.batch_size,\n",
- " num_workers=args.num_workers,\n",
- " train_names=[\"train\"],\n",
- " val_names=[\"src_train\", \"target_train\", \"src_val\", \"target_val\",\n",
- " \"target_train_with_labels\", \"target_val_with_labels\"])\n",
- "\n",
- "G = new_trainer.adapter.models[\"G\"]\n",
- "C = new_trainer.adapter.models[\"C\"]\n",
- "D = Discriminator(in_size=2048, h=1024).to(device)\n",
- "\n",
- "optimizers = Optimizers((torch.optim.Adam, {\"lr\": 0.001}))\n",
- "lr_schedulers = LRSchedulers((torch.optim.lr_scheduler.ExponentialLR, {\"gamma\": 0.99}))\n",
- "# lr_schedulers = LRSchedulers((torch.optim.lr_scheduler.MultiStepLR, {\"milestones\": [2, 5, 10, 20, 40], \"gamma\": hp.gamma}))\n",
- "\n",
- "models = Models({\"G\": G, \"C\": C, \"D\": D})\n",
- "adapter = DANN(models=models, optimizers=optimizers, lr_schedulers=lr_schedulers)\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 90,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "cuda:0\n"
- ]
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "bf490d18567444149070191e100f8c45",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "[1/3] 33%|###3 |it [00:00<?]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "525920fcd19d4178a4bada48932c8fb1",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "[1/9] 11%|#1 |it [00:00<?]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "bd1158f548e746cdab88d608b22ab65c",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "[1/9] 11%|#1 |it [00:00<?]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "196fa120037b48fdb4e9a879e7e7c79b",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "[1/3] 33%|###3 |it [00:00<?]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "6795edb658a84309b1a03bcea6a24643",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "[1/9] 11%|#1 |it [00:00<?]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "\n",
- "output_dir = \"tmp\"\n",
- "checkpoint_fn = CheckpointFnCreator(dirname=f\"{output_dir}/saved_models\", require_empty=False)\n",
- "\n",
- "sourceAccuracyValidator = AccuracyValidator()\n",
- "targetAccuracyValidator = AccuracyValidator(key_map={\"target_val_with_labels\": \"src_val\"})\n",
- "val_hooks = [ScoreHistory(sourceAccuracyValidator), ScoreHistory(targetAccuracyValidator)]\n",
- "\n",
- "trainer = Ignite(\n",
- " adapter, val_hooks=val_hooks, device=device\n",
- ")\n",
- "print(trainer.device)\n",
- "\n",
- "best_score, best_epoch = trainer.run(\n",
- " datasets, dataloader_creator=dc, max_epochs=args.max_epochs, early_stopper_kwargs=early_stopper_kwargs, check_initial_score=True\n",
- ")\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 91,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "ScoreHistory(\n",
- " validator=AccuracyValidator(required_data=['src_val'])\n",
- " latest_score=0.30319148302078247\n",
- " best_score=0.868794322013855\n",
- " best_epoch=0\n",
- ")"
- ]
- },
- "execution_count": 91,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "val_hooks[0]"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 92,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "ScoreHistory(\n",
- " validator=AccuracyValidator(required_data=['target_val_with_labels'])\n",
- " latest_score=0.2515723407268524\n",
- " best_score=0.74842768907547\n",
- " best_epoch=0\n",
- ")"
- ]
- },
- "execution_count": 92,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "val_hooks[1]"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 86,
- "metadata": {},
- "outputs": [],
- "source": [
- "del trainer"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 87,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "21169"
- ]
- },
- "execution_count": 87,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "import gc\n",
- "gc.collect()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 88,
- "metadata": {},
- "outputs": [],
- "source": [
- "torch.cuda.empty_cache()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 95,
- "metadata": {},
- "outputs": [],
- "source": [
- "args.vishook_frequency = 133"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 96,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "Namespace(batch_size=64, data_root='./datasets/pytorch-adapt/', download=False, gamma=0.99, hp_tune=False, initial_trial=0, lr=0.0001, max_epochs=1, model_names=['DANN'], num_workers=1, patience=2, results_root='./results/', root='./', source=None, target=None, trials_count=1, vishook_frequency=133)"
- ]
- },
- "execution_count": 96,
- "metadata": {},
- "output_type": "execute_result"
- },
- {
- "ename": "",
- "evalue": "",
- "output_type": "error",
- "traceback": [
- "\u001b[1;31mThe Kernel crashed while executing code in the the current cell or a previous cell. Please review the code in the cell(s) to identify a possible cause of the failure. Click <a href='https://aka.ms/vscodeJupyterKernelCrash'>here</a> for more info. View Jupyter <a href='command:jupyter.viewOutput'>log</a> for further details."
- ]
- }
- ],
- "source": [
- "args"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": []
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "-----"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {},
- "outputs": [],
- "source": [
- "path = \"/media/10TB71/shashemi/Domain-Adaptation/results/DAModels.CDAN/2000/a2d/saved_models\""
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {},
- "outputs": [],
- "source": [
- "source_domain = 'amazon'\n",
- "target_domain = 'dslr'\n",
- "G = office31G(pretrained=False).to(device)\n",
- "C = office31C(pretrained=False).to(device)\n",
- "\n",
- "\n",
- "optimizers = Optimizers((torch.optim.Adam, {\"lr\": 1e-4}))\n",
- "lr_schedulers = LRSchedulers((torch.optim.lr_scheduler.ExponentialLR, {\"gamma\": 0.99})) \n",
- "\n",
- "models = Models({\"G\": G, \"C\": C})\n",
- "adapter= ClassifierAdapter(models=models, optimizers=optimizers, lr_schedulers=lr_schedulers)\n",
- "\n",
- "\n",
- "output_dir = \"tmp\"\n",
- "checkpoint_fn = CheckpointFnCreator(dirname=f\"{output_dir}/saved_models\", require_empty=False)\n",
- "\n",
- "sourceAccuracyValidator = AccuracyValidator()\n",
- "val_hooks = [ScoreHistory(sourceAccuracyValidator)]\n",
- "\n",
- "new_trainer = Ignite(\n",
- " adapter, val_hooks=val_hooks, checkpoint_fn=checkpoint_fn, device=device\n",
- ")\n",
- "\n",
- "from pytorch_adapt.frameworks.ignite import (\n",
- " CheckpointFnCreator,\n",
- " IgniteValHookWrapper,\n",
- " checkpoint_utils,\n",
- ")\n",
- "\n",
- "objs = [\n",
- " {\n",
- " \"engine\": new_trainer.trainer,\n",
- " \"validator\": new_trainer.validator,\n",
- " \"val_hook0\": val_hooks[0],\n",
- " **checkpoint_utils.adapter_to_dict(new_trainer.adapter),\n",
- " }\n",
- " ]\n",
- " \n",
- "# best_score, best_epoch = trainer.run(\n",
- "# datasets, dataloader_creator=dc, max_epochs=args.max_epochs, early_stopper_kwargs=early_stopper_kwargs\n",
- "# )\n",
- "\n",
- "for to_load in objs:\n",
- " checkpoint_fn.load_best_checkpoint(to_load)\n",
- "\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "926966dd640e4979ade6a45cf0fcdd49",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "[1/9] 11%|#1 |it [00:00<?]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Source acc: 0.868794322013855\n"
- ]
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "64cd5cfb052c4f52af9af1a63a4c0087",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "[1/2] 50%|##### |it [00:00<?]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Target acc: 0.7200000286102295\n",
- "---------\n"
- ]
- }
- ],
- "source": [
- "\n",
- "datasets = get_office31([source_domain], [target_domain], folder=args.data_root, return_target_with_labels=True)\n",
- "dc = DataloaderCreator(batch_size=args.batch_size, num_workers=args.num_workers, all_val=True)\n",
- "\n",
- "validator = AccuracyValidator(key_map={\"src_val\": \"src_val\"})\n",
- "src_score = new_trainer.evaluate_best_model(datasets, validator, dc)\n",
- "print(\"Source acc:\", src_score)\n",
- "\n",
- "validator = AccuracyValidator(key_map={\"target_val_with_labels\": \"src_val\"})\n",
- "target_score = new_trainer.evaluate_best_model(datasets, validator, dc)\n",
- "print(\"Target acc:\", target_score)\n",
- "print(\"---------\")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {},
- "outputs": [],
- "source": [
- "source_domain = 'amazon'\n",
- "target_domain = 'dslr'\n",
- "G = new_trainer.adapter.models[\"G\"]\n",
- "C = new_trainer.adapter.models[\"C\"]\n",
- "\n",
- "G.fc = C.net[:6]\n",
- "C.net = C.net[6:]\n",
- "\n",
- "\n",
- "optimizers = Optimizers((torch.optim.Adam, {\"lr\": 1e-4}))\n",
- "lr_schedulers = LRSchedulers((torch.optim.lr_scheduler.ExponentialLR, {\"gamma\": 0.99})) \n",
- "\n",
- "models = Models({\"G\": G, \"C\": C})\n",
- "adapter= ClassifierAdapter(models=models, optimizers=optimizers, lr_schedulers=lr_schedulers)\n",
- "\n",
- "\n",
- "output_dir = \"tmp\"\n",
- "checkpoint_fn = CheckpointFnCreator(dirname=f\"{output_dir}/saved_models\", require_empty=False)\n",
- "\n",
- "sourceAccuracyValidator = AccuracyValidator()\n",
- "val_hooks = [ScoreHistory(sourceAccuracyValidator)]\n",
- "\n",
- "more_new_trainer = Ignite(\n",
- " adapter, val_hooks=val_hooks, checkpoint_fn=checkpoint_fn, device=device\n",
- ")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {},
- "outputs": [],
- "source": [
- "from pytorch_adapt.hooks import FeaturesAndLogitsHook\n",
- "\n",
- "h1 = FeaturesAndLogitsHook()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 19,
- "metadata": {},
- "outputs": [
- {
- "ename": "KeyError",
- "evalue": "in FeaturesAndLogitsHook: __call__\nin FeaturesHook: __call__\nFeaturesHook: Getting src\nFeaturesHook: Getting output: ['src_imgs_features']\nFeaturesHook: Using model G with inputs: src_imgs\nG",
- "output_type": "error",
- "traceback": [
- "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
- "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)",
- "Cell \u001b[0;32mIn[19], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m h1(datasets)\n",
- "File \u001b[0;32m/media/10TB71/shashemi/miniconda3/envs/cdtrans/lib/python3.8/site-packages/pytorch_adapt/hooks/base.py:52\u001b[0m, in \u001b[0;36mBaseHook.__call__\u001b[0;34m(self, inputs, losses)\u001b[0m\n\u001b[1;32m 50\u001b[0m \u001b[39mtry\u001b[39;00m:\n\u001b[1;32m 51\u001b[0m inputs \u001b[39m=\u001b[39m c_f\u001b[39m.\u001b[39mmap_keys(inputs, \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mkey_map)\n\u001b[0;32m---> 52\u001b[0m x \u001b[39m=\u001b[39m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mcall(inputs, losses)\n\u001b[1;32m 53\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39misinstance\u001b[39m(x, (\u001b[39mbool\u001b[39m, np\u001b[39m.\u001b[39mbool_)):\n\u001b[1;32m 54\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mlogger\u001b[39m.\u001b[39mreset()\n",
- "File \u001b[0;32m/media/10TB71/shashemi/miniconda3/envs/cdtrans/lib/python3.8/site-packages/pytorch_adapt/hooks/utils.py:109\u001b[0m, in \u001b[0;36mChainHook.call\u001b[0;34m(self, inputs, losses)\u001b[0m\n\u001b[1;32m 107\u001b[0m all_losses \u001b[39m=\u001b[39m {\u001b[39m*\u001b[39m\u001b[39m*\u001b[39mall_losses, \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mprev_losses}\n\u001b[1;32m 108\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mconditions[i](all_inputs, all_losses):\n\u001b[0;32m--> 109\u001b[0m x \u001b[39m=\u001b[39m h(all_inputs, all_losses)\n\u001b[1;32m 110\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[1;32m 111\u001b[0m x \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39malts[i](all_inputs, all_losses)\n",
- "File \u001b[0;32m/media/10TB71/shashemi/miniconda3/envs/cdtrans/lib/python3.8/site-packages/pytorch_adapt/hooks/base.py:52\u001b[0m, in \u001b[0;36mBaseHook.__call__\u001b[0;34m(self, inputs, losses)\u001b[0m\n\u001b[1;32m 50\u001b[0m \u001b[39mtry\u001b[39;00m:\n\u001b[1;32m 51\u001b[0m inputs \u001b[39m=\u001b[39m c_f\u001b[39m.\u001b[39mmap_keys(inputs, \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mkey_map)\n\u001b[0;32m---> 52\u001b[0m x \u001b[39m=\u001b[39m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mcall(inputs, losses)\n\u001b[1;32m 53\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39misinstance\u001b[39m(x, (\u001b[39mbool\u001b[39m, np\u001b[39m.\u001b[39mbool_)):\n\u001b[1;32m 54\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mlogger\u001b[39m.\u001b[39mreset()\n",
- "File \u001b[0;32m/media/10TB71/shashemi/miniconda3/envs/cdtrans/lib/python3.8/site-packages/pytorch_adapt/hooks/features.py:80\u001b[0m, in \u001b[0;36mBaseFeaturesHook.call\u001b[0;34m(self, inputs, losses)\u001b[0m\n\u001b[1;32m 78\u001b[0m func \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mmode_detached \u001b[39mif\u001b[39;00m detach \u001b[39melse\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mmode_with_grad\n\u001b[1;32m 79\u001b[0m in_keys \u001b[39m=\u001b[39m c_f\u001b[39m.\u001b[39mfilter(\u001b[39mself\u001b[39m\u001b[39m.\u001b[39min_keys, \u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39m^\u001b[39m\u001b[39m{\u001b[39;00mdomain\u001b[39m}\u001b[39;00m\u001b[39m\"\u001b[39m)\n\u001b[0;32m---> 80\u001b[0m func(inputs, outputs, domain, in_keys)\n\u001b[1;32m 82\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mcheck_outputs_requires_grad(outputs)\n\u001b[1;32m 83\u001b[0m \u001b[39mreturn\u001b[39;00m outputs, {}\n",
- "File \u001b[0;32m/media/10TB71/shashemi/miniconda3/envs/cdtrans/lib/python3.8/site-packages/pytorch_adapt/hooks/features.py:106\u001b[0m, in \u001b[0;36mBaseFeaturesHook.mode_with_grad\u001b[0;34m(self, inputs, outputs, domain, in_keys)\u001b[0m\n\u001b[1;32m 104\u001b[0m output_keys \u001b[39m=\u001b[39m c_f\u001b[39m.\u001b[39mfilter(\u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_out_keys(), \u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39m^\u001b[39m\u001b[39m{\u001b[39;00mdomain\u001b[39m}\u001b[39;00m\u001b[39m\"\u001b[39m)\n\u001b[1;32m 105\u001b[0m output_vals \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mget_kwargs(inputs, output_keys)\n\u001b[0;32m--> 106\u001b[0m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49madd_if_new(\n\u001b[1;32m 107\u001b[0m outputs, output_keys, output_vals, inputs, \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mmodel_name, in_keys, domain\n\u001b[1;32m 108\u001b[0m )\n\u001b[1;32m 109\u001b[0m \u001b[39mreturn\u001b[39;00m output_keys, output_vals\n",
- "File \u001b[0;32m/media/10TB71/shashemi/miniconda3/envs/cdtrans/lib/python3.8/site-packages/pytorch_adapt/hooks/features.py:133\u001b[0m, in \u001b[0;36mBaseFeaturesHook.add_if_new\u001b[0;34m(self, outputs, full_key, output_vals, inputs, model_name, in_keys, domain)\u001b[0m\n\u001b[1;32m 130\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39madd_if_new\u001b[39m(\n\u001b[1;32m 131\u001b[0m \u001b[39mself\u001b[39m, outputs, full_key, output_vals, inputs, model_name, in_keys, domain\n\u001b[1;32m 132\u001b[0m ):\n\u001b[0;32m--> 133\u001b[0m c_f\u001b[39m.\u001b[39;49madd_if_new(\n\u001b[1;32m 134\u001b[0m outputs,\n\u001b[1;32m 135\u001b[0m full_key,\n\u001b[1;32m 136\u001b[0m output_vals,\n\u001b[1;32m 137\u001b[0m inputs,\n\u001b[1;32m 138\u001b[0m model_name,\n\u001b[1;32m 139\u001b[0m in_keys,\n\u001b[1;32m 140\u001b[0m logger\u001b[39m=\u001b[39;49m\u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mlogger,\n\u001b[1;32m 141\u001b[0m )\n",
- "File \u001b[0;32m/media/10TB71/shashemi/miniconda3/envs/cdtrans/lib/python3.8/site-packages/pytorch_adapt/utils/common_functions.py:96\u001b[0m, in \u001b[0;36madd_if_new\u001b[0;34m(d, key, x, kwargs, model_name, in_keys, other_args, logger)\u001b[0m\n\u001b[1;32m 94\u001b[0m condition \u001b[39m=\u001b[39m is_none\n\u001b[1;32m 95\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39many\u001b[39m(condition(y) \u001b[39mfor\u001b[39;00m y \u001b[39min\u001b[39;00m x):\n\u001b[0;32m---> 96\u001b[0m model \u001b[39m=\u001b[39m kwargs[model_name]\n\u001b[1;32m 97\u001b[0m input_vals \u001b[39m=\u001b[39m [kwargs[k] \u001b[39mfor\u001b[39;00m k \u001b[39min\u001b[39;00m in_keys] \u001b[39m+\u001b[39m \u001b[39mlist\u001b[39m(other_args\u001b[39m.\u001b[39mvalues())\n\u001b[1;32m 98\u001b[0m new_x \u001b[39m=\u001b[39m try_use_model(model, model_name, input_vals)\n",
- "\u001b[0;31mKeyError\u001b[0m: in FeaturesAndLogitsHook: __call__\nin FeaturesHook: __call__\nFeaturesHook: Getting src\nFeaturesHook: Getting output: ['src_imgs_features']\nFeaturesHook: Using model G with inputs: src_imgs\nG"
- ]
- }
- ],
- "source": [
- "h1(datasets)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": []
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "cdtrans",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.8.15 (default, Nov 24 2022, 15:19:38) \n[GCC 11.2.0]"
- },
- "orig_nbformat": 4,
- "vscode": {
- "interpreter": {
- "hash": "959b82c3a41427bdf7d14d4ba7335271e0c50cfcddd70501934b27dcc36968ad"
- }
- }
- },
- "nbformat": 4,
- "nbformat_minor": 2
- }
|