{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"device(type='cuda', index=0)"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"\n",
"import torch\n",
"import os\n",
"\n",
"from pytorch_adapt.adapters import DANN, MCD, VADA, CDAN, RTN, ADDA, Aligner, SymNets\n",
"from pytorch_adapt.containers import Models, Optimizers, LRSchedulers\n",
"from pytorch_adapt.models import Discriminator, office31C, office31G\n",
"from pytorch_adapt.containers import Misc\n",
"from pytorch_adapt.layers import RandomizedDotProduct\n",
"from pytorch_adapt.layers import MultipleModels, CORALLoss, MMDLoss\n",
"from pytorch_adapt.utils import common_functions\n",
"from pytorch_adapt.containers import LRSchedulers\n",
"\n",
"from classifier_adapter import ClassifierAdapter\n",
"\n",
"from utils import HP, DAModels\n",
"\n",
"import copy\n",
"\n",
"import matplotlib.pyplot as plt\n",
"import torch\n",
"import os\n",
"import gc\n",
"from datetime import datetime\n",
"\n",
"from pytorch_adapt.datasets import DataloaderCreator, get_office31\n",
"from pytorch_adapt.frameworks.ignite import CheckpointFnCreator, Ignite\n",
"from pytorch_adapt.validators import AccuracyValidator, IMValidator, ScoreHistory, DiversityValidator, EntropyValidator, MultipleValidators\n",
"\n",
"from models import get_model\n",
"from utils import DAModels\n",
"\n",
"from vis_hook import VizHook\n",
"device = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu\")\n",
"device"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Namespace(batch_size=64, data_root='./datasets/pytorch-adapt/', download=False, gamma=0.99, hp_tune=False, initial_trial=0, lr=0.0001, max_epochs=1, model_names=['DANN'], num_workers=1, patience=2, results_root='./results/', root='./', source=None, target=None, trials_count=1, vishook_frequency=5)\n"
]
}
],
"source": [
"import argparse\n",
"parser = argparse.ArgumentParser()\n",
"parser.add_argument('--max_epochs', default=1, type=int)\n",
"parser.add_argument('--patience', default=2, type=int)\n",
"parser.add_argument('--batch_size', default=64, type=int)\n",
"parser.add_argument('--num_workers', default=1, type=int)\n",
"parser.add_argument('--trials_count', default=1, type=int)\n",
"parser.add_argument('--initial_trial', default=0, type=int)\n",
"parser.add_argument('--download', default=False, type=bool)\n",
"parser.add_argument('--root', default=\"./\")\n",
"parser.add_argument('--data_root', default=\"./datasets/pytorch-adapt/\")\n",
"parser.add_argument('--results_root', default=\"./results/\")\n",
"parser.add_argument('--model_names', default=[\"DANN\"], nargs='+')\n",
"parser.add_argument('--lr', default=0.0001, type=float)\n",
"parser.add_argument('--gamma', default=0.99, type=float)\n",
"parser.add_argument('--hp_tune', default=False, type=bool)\n",
"parser.add_argument('--source', default=None)\n",
"parser.add_argument('--target', default=None) \n",
"parser.add_argument('--vishook_frequency', default=5, type=int)\n",
" \n",
"\n",
"args = parser.parse_args(\"\")\n",
"print(args)\n"
]
},
{
"cell_type": "code",
"execution_count": 45,
"metadata": {},
"outputs": [],
"source": [
"source_domain = 'amazon'\n",
"target_domain = 'webcam'\n",
"datasets = get_office31([source_domain], [],\n",
" folder=args.data_root,\n",
" return_target_with_labels=True,\n",
" download=args.download)\n",
"\n",
"dc = DataloaderCreator(batch_size=args.batch_size,\n",
" num_workers=args.num_workers,\n",
" )\n",
"\n",
"weights_root = os.path.join(args.data_root, \"weights\")\n",
"\n",
"G = office31G(pretrained=True, model_dir=weights_root).to(device)\n",
"C = office31C(domain=source_domain, pretrained=True,\n",
" model_dir=weights_root).to(device)\n",
"\n",
"\n",
"optimizers = Optimizers((torch.optim.Adam, {\"lr\": 1e-4}))\n",
"lr_schedulers = LRSchedulers((torch.optim.lr_scheduler.ExponentialLR, {\"gamma\": 0.99})) \n",
"\n",
"models = Models({\"G\": G, \"C\": C})\n",
"adapter= ClassifierAdapter(models=models, optimizers=optimizers, lr_schedulers=lr_schedulers)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"cuda:0\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f28aaf5a334d4f91a9beb21e714c43a5",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"[1/35] 3%|2 |it [00:00]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7131d8b9099c4d0a95155595919c55f5",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"[1/9] 11%|#1 |it [00:00]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"best_score=None, best_epoch=None\n"
]
},
{
"ename": "AttributeError",
"evalue": "'Namespace' object has no attribute 'dataroot'",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[39], line 31\u001b[0m\n\u001b[1;32m 28\u001b[0m plt\u001b[39m.\u001b[39msavefig(\u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39m{\u001b[39;00moutput_dir\u001b[39m}\u001b[39;00m\u001b[39m/val_accuracy.png\u001b[39m\u001b[39m\"\u001b[39m)\n\u001b[1;32m 29\u001b[0m plt\u001b[39m.\u001b[39mclose(\u001b[39m'\u001b[39m\u001b[39mall\u001b[39m\u001b[39m'\u001b[39m)\n\u001b[0;32m---> 31\u001b[0m datasets \u001b[39m=\u001b[39m get_office31([source_domain], [target_domain], folder\u001b[39m=\u001b[39margs\u001b[39m.\u001b[39;49mdataroot, return_target_with_labels\u001b[39m=\u001b[39m\u001b[39mTrue\u001b[39;00m)\n\u001b[1;32m 32\u001b[0m dc \u001b[39m=\u001b[39m DataloaderCreator(batch_size\u001b[39m=\u001b[39margs\u001b[39m.\u001b[39mbatch_size, num_workers\u001b[39m=\u001b[39margs\u001b[39m.\u001b[39mnum_workers, all_val\u001b[39m=\u001b[39m\u001b[39mTrue\u001b[39;00m)\n\u001b[1;32m 34\u001b[0m validator \u001b[39m=\u001b[39m AccuracyValidator(key_map\u001b[39m=\u001b[39m{\u001b[39m\"\u001b[39m\u001b[39msrc_val\u001b[39m\u001b[39m\"\u001b[39m: \u001b[39m\"\u001b[39m\u001b[39msrc_val\u001b[39m\u001b[39m\"\u001b[39m})\n",
"\u001b[0;31mAttributeError\u001b[0m: 'Namespace' object has no attribute 'dataroot'"
]
}
],
"source": [
"\n",
"output_dir = \"tmp\"\n",
"checkpoint_fn = CheckpointFnCreator(dirname=f\"{output_dir}/saved_models\", require_empty=False)\n",
"\n",
"sourceAccuracyValidator = AccuracyValidator()\n",
"val_hooks = [ScoreHistory(sourceAccuracyValidator)]\n",
"\n",
"trainer = Ignite(\n",
" adapter, val_hooks=val_hooks, checkpoint_fn=checkpoint_fn, device=device\n",
")\n",
"print(trainer.device)\n",
"\n",
"early_stopper_kwargs = {\"patience\": args.patience}\n",
"\n",
"start_time = datetime.now()\n",
"\n",
"best_score, best_epoch = trainer.run(\n",
" datasets, dataloader_creator=dc, max_epochs=args.max_epochs, early_stopper_kwargs=early_stopper_kwargs\n",
")\n",
"\n",
"end_time = datetime.now()\n",
"training_time = end_time - start_time\n",
"\n",
"print(f\"best_score={best_score}, best_epoch={best_epoch}\")\n",
"\n",
"plt.plot(val_hooks[0].score_history, label='source')\n",
"plt.title(\"val accuracy\")\n",
"plt.legend()\n",
"plt.savefig(f\"{output_dir}/val_accuracy.png\")\n",
"plt.close('all')\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "173d54ab994d4abda6e4f0897ad96c49",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"[1/9] 11%|#1 |it [00:00]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Source acc: 0.868794322013855\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "13b4a1ccc3b34456b68c73357d14bc21",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"[1/3] 33%|###3 |it [00:00]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Target acc: 0.74842768907547\n",
"---------\n"
]
}
],
"source": [
"\n",
"datasets = get_office31([source_domain], [target_domain], folder=args.data_root, return_target_with_labels=True)\n",
"dc = DataloaderCreator(batch_size=args.batch_size, num_workers=args.num_workers, all_val=True)\n",
"\n",
"validator = AccuracyValidator(key_map={\"src_val\": \"src_val\"})\n",
"src_score = trainer.evaluate_best_model(datasets, validator, dc)\n",
"print(\"Source acc:\", src_score)\n",
"\n",
"validator = AccuracyValidator(key_map={\"target_val_with_labels\": \"src_val\"})\n",
"target_score = trainer.evaluate_best_model(datasets, validator, dc)\n",
"print(\"Target acc:\", target_score)\n",
"print(\"---------\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"C2 = copy.deepcopy(C) "
]
},
{
"cell_type": "code",
"execution_count": 93,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"cuda:0\n"
]
}
],
"source": [
"source_domain = 'amazon'\n",
"target_domain = 'webcam'\n",
"G = office31G(pretrained=False).to(device)\n",
"C = office31C(pretrained=False).to(device)\n",
"\n",
"\n",
"optimizers = Optimizers((torch.optim.Adam, {\"lr\": 1e-4}))\n",
"lr_schedulers = LRSchedulers((torch.optim.lr_scheduler.ExponentialLR, {\"gamma\": 0.99})) \n",
"\n",
"models = Models({\"G\": G, \"C\": C})\n",
"adapter= ClassifierAdapter(models=models, optimizers=optimizers, lr_schedulers=lr_schedulers)\n",
"\n",
"\n",
"output_dir = \"tmp\"\n",
"checkpoint_fn = CheckpointFnCreator(dirname=f\"{output_dir}/saved_models\", require_empty=False)\n",
"\n",
"sourceAccuracyValidator = AccuracyValidator()\n",
"val_hooks = [ScoreHistory(sourceAccuracyValidator)]\n",
"\n",
"new_trainer = Ignite(\n",
" adapter, val_hooks=val_hooks, checkpoint_fn=checkpoint_fn, device=device\n",
")\n",
"print(trainer.device)\n",
"\n",
"from pytorch_adapt.frameworks.ignite import (\n",
" CheckpointFnCreator,\n",
" IgniteValHookWrapper,\n",
" checkpoint_utils,\n",
")\n",
"\n",
"objs = [\n",
" {\n",
" \"engine\": new_trainer.trainer,\n",
" \"validator\": new_trainer.validator,\n",
" \"val_hook0\": val_hooks[0],\n",
" **checkpoint_utils.adapter_to_dict(new_trainer.adapter),\n",
" }\n",
" ]\n",
" \n",
"# best_score, best_epoch = trainer.run(\n",
"# datasets, dataloader_creator=dc, max_epochs=args.max_epochs, early_stopper_kwargs=early_stopper_kwargs\n",
"# )\n",
"\n",
"for to_load in objs:\n",
" checkpoint_fn.load_best_checkpoint(to_load)\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 94,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "32f01ff7ea254739909e4567a133b00a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"[1/9] 11%|#1 |it [00:00]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Source acc: 0.868794322013855\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "cef345c05e5e46eb9fc0e1cc40b02435",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"[1/3] 33%|###3 |it [00:00]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Target acc: 0.74842768907547\n",
"---------\n"
]
}
],
"source": [
"\n",
"datasets = get_office31([source_domain], [target_domain], folder=args.data_root, return_target_with_labels=True)\n",
"dc = DataloaderCreator(batch_size=args.batch_size, num_workers=args.num_workers, all_val=True)\n",
"\n",
"validator = AccuracyValidator(key_map={\"src_val\": \"src_val\"})\n",
"src_score = new_trainer.evaluate_best_model(datasets, validator, dc)\n",
"print(\"Source acc:\", src_score)\n",
"\n",
"validator = AccuracyValidator(key_map={\"target_val_with_labels\": \"src_val\"})\n",
"target_score = new_trainer.evaluate_best_model(datasets, validator, dc)\n",
"print(\"Target acc:\", target_score)\n",
"print(\"---------\")"
]
},
{
"cell_type": "code",
"execution_count": 89,
"metadata": {},
"outputs": [],
"source": [
"\n",
"datasets = get_office31([source_domain], [target_domain],\n",
" folder=args.data_root,\n",
" return_target_with_labels=True,\n",
" download=args.download)\n",
" \n",
"dc = DataloaderCreator(batch_size=args.batch_size,\n",
" num_workers=args.num_workers,\n",
" train_names=[\"train\"],\n",
" val_names=[\"src_train\", \"target_train\", \"src_val\", \"target_val\",\n",
" \"target_train_with_labels\", \"target_val_with_labels\"])\n",
"\n",
"G = new_trainer.adapter.models[\"G\"]\n",
"C = new_trainer.adapter.models[\"C\"]\n",
"D = Discriminator(in_size=2048, h=1024).to(device)\n",
"\n",
"optimizers = Optimizers((torch.optim.Adam, {\"lr\": 0.001}))\n",
"lr_schedulers = LRSchedulers((torch.optim.lr_scheduler.ExponentialLR, {\"gamma\": 0.99}))\n",
"# lr_schedulers = LRSchedulers((torch.optim.lr_scheduler.MultiStepLR, {\"milestones\": [2, 5, 10, 20, 40], \"gamma\": hp.gamma}))\n",
"\n",
"models = Models({\"G\": G, \"C\": C, \"D\": D})\n",
"adapter = DANN(models=models, optimizers=optimizers, lr_schedulers=lr_schedulers)\n"
]
},
{
"cell_type": "code",
"execution_count": 90,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"cuda:0\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "bf490d18567444149070191e100f8c45",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"[1/3] 33%|###3 |it [00:00]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "525920fcd19d4178a4bada48932c8fb1",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"[1/9] 11%|#1 |it [00:00]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "bd1158f548e746cdab88d608b22ab65c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"[1/9] 11%|#1 |it [00:00]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "196fa120037b48fdb4e9a879e7e7c79b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"[1/3] 33%|###3 |it [00:00]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "6795edb658a84309b1a03bcea6a24643",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"[1/9] 11%|#1 |it [00:00]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"\n",
"output_dir = \"tmp\"\n",
"checkpoint_fn = CheckpointFnCreator(dirname=f\"{output_dir}/saved_models\", require_empty=False)\n",
"\n",
"sourceAccuracyValidator = AccuracyValidator()\n",
"targetAccuracyValidator = AccuracyValidator(key_map={\"target_val_with_labels\": \"src_val\"})\n",
"val_hooks = [ScoreHistory(sourceAccuracyValidator), ScoreHistory(targetAccuracyValidator)]\n",
"\n",
"trainer = Ignite(\n",
" adapter, val_hooks=val_hooks, device=device\n",
")\n",
"print(trainer.device)\n",
"\n",
"best_score, best_epoch = trainer.run(\n",
" datasets, dataloader_creator=dc, max_epochs=args.max_epochs, early_stopper_kwargs=early_stopper_kwargs, check_initial_score=True\n",
")\n"
]
},
{
"cell_type": "code",
"execution_count": 91,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"ScoreHistory(\n",
" validator=AccuracyValidator(required_data=['src_val'])\n",
" latest_score=0.30319148302078247\n",
" best_score=0.868794322013855\n",
" best_epoch=0\n",
")"
]
},
"execution_count": 91,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"val_hooks[0]"
]
},
{
"cell_type": "code",
"execution_count": 92,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"ScoreHistory(\n",
" validator=AccuracyValidator(required_data=['target_val_with_labels'])\n",
" latest_score=0.2515723407268524\n",
" best_score=0.74842768907547\n",
" best_epoch=0\n",
")"
]
},
"execution_count": 92,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"val_hooks[1]"
]
},
{
"cell_type": "code",
"execution_count": 86,
"metadata": {},
"outputs": [],
"source": [
"del trainer"
]
},
{
"cell_type": "code",
"execution_count": 87,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"21169"
]
},
"execution_count": 87,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import gc\n",
"gc.collect()"
]
},
{
"cell_type": "code",
"execution_count": 88,
"metadata": {},
"outputs": [],
"source": [
"torch.cuda.empty_cache()"
]
},
{
"cell_type": "code",
"execution_count": 95,
"metadata": {},
"outputs": [],
"source": [
"args.vishook_frequency = 133"
]
},
{
"cell_type": "code",
"execution_count": 96,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Namespace(batch_size=64, data_root='./datasets/pytorch-adapt/', download=False, gamma=0.99, hp_tune=False, initial_trial=0, lr=0.0001, max_epochs=1, model_names=['DANN'], num_workers=1, patience=2, results_root='./results/', root='./', source=None, target=None, trials_count=1, vishook_frequency=133)"
]
},
"execution_count": 96,
"metadata": {},
"output_type": "execute_result"
},
{
"ename": "",
"evalue": "",
"output_type": "error",
"traceback": [
"\u001b[1;31mThe Kernel crashed while executing code in the the current cell or a previous cell. Please review the code in the cell(s) to identify a possible cause of the failure. Click here for more info. View Jupyter log for further details."
]
}
],
"source": [
"args"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"-----"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"path = \"/media/10TB71/shashemi/Domain-Adaptation/results/DAModels.CDAN/2000/a2d/saved_models\""
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"source_domain = 'amazon'\n",
"target_domain = 'dslr'\n",
"G = office31G(pretrained=False).to(device)\n",
"C = office31C(pretrained=False).to(device)\n",
"\n",
"\n",
"optimizers = Optimizers((torch.optim.Adam, {\"lr\": 1e-4}))\n",
"lr_schedulers = LRSchedulers((torch.optim.lr_scheduler.ExponentialLR, {\"gamma\": 0.99})) \n",
"\n",
"models = Models({\"G\": G, \"C\": C})\n",
"adapter= ClassifierAdapter(models=models, optimizers=optimizers, lr_schedulers=lr_schedulers)\n",
"\n",
"\n",
"output_dir = \"tmp\"\n",
"checkpoint_fn = CheckpointFnCreator(dirname=f\"{output_dir}/saved_models\", require_empty=False)\n",
"\n",
"sourceAccuracyValidator = AccuracyValidator()\n",
"val_hooks = [ScoreHistory(sourceAccuracyValidator)]\n",
"\n",
"new_trainer = Ignite(\n",
" adapter, val_hooks=val_hooks, checkpoint_fn=checkpoint_fn, device=device\n",
")\n",
"\n",
"from pytorch_adapt.frameworks.ignite import (\n",
" CheckpointFnCreator,\n",
" IgniteValHookWrapper,\n",
" checkpoint_utils,\n",
")\n",
"\n",
"objs = [\n",
" {\n",
" \"engine\": new_trainer.trainer,\n",
" \"validator\": new_trainer.validator,\n",
" \"val_hook0\": val_hooks[0],\n",
" **checkpoint_utils.adapter_to_dict(new_trainer.adapter),\n",
" }\n",
" ]\n",
" \n",
"# best_score, best_epoch = trainer.run(\n",
"# datasets, dataloader_creator=dc, max_epochs=args.max_epochs, early_stopper_kwargs=early_stopper_kwargs\n",
"# )\n",
"\n",
"for to_load in objs:\n",
" checkpoint_fn.load_best_checkpoint(to_load)\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "926966dd640e4979ade6a45cf0fcdd49",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"[1/9] 11%|#1 |it [00:00]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Source acc: 0.868794322013855\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "64cd5cfb052c4f52af9af1a63a4c0087",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"[1/2] 50%|##### |it [00:00]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Target acc: 0.7200000286102295\n",
"---------\n"
]
}
],
"source": [
"\n",
"datasets = get_office31([source_domain], [target_domain], folder=args.data_root, return_target_with_labels=True)\n",
"dc = DataloaderCreator(batch_size=args.batch_size, num_workers=args.num_workers, all_val=True)\n",
"\n",
"validator = AccuracyValidator(key_map={\"src_val\": \"src_val\"})\n",
"src_score = new_trainer.evaluate_best_model(datasets, validator, dc)\n",
"print(\"Source acc:\", src_score)\n",
"\n",
"validator = AccuracyValidator(key_map={\"target_val_with_labels\": \"src_val\"})\n",
"target_score = new_trainer.evaluate_best_model(datasets, validator, dc)\n",
"print(\"Target acc:\", target_score)\n",
"print(\"---------\")"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"source_domain = 'amazon'\n",
"target_domain = 'dslr'\n",
"G = new_trainer.adapter.models[\"G\"]\n",
"C = new_trainer.adapter.models[\"C\"]\n",
"\n",
"G.fc = C.net[:6]\n",
"C.net = C.net[6:]\n",
"\n",
"\n",
"optimizers = Optimizers((torch.optim.Adam, {\"lr\": 1e-4}))\n",
"lr_schedulers = LRSchedulers((torch.optim.lr_scheduler.ExponentialLR, {\"gamma\": 0.99})) \n",
"\n",
"models = Models({\"G\": G, \"C\": C})\n",
"adapter= ClassifierAdapter(models=models, optimizers=optimizers, lr_schedulers=lr_schedulers)\n",
"\n",
"\n",
"output_dir = \"tmp\"\n",
"checkpoint_fn = CheckpointFnCreator(dirname=f\"{output_dir}/saved_models\", require_empty=False)\n",
"\n",
"sourceAccuracyValidator = AccuracyValidator()\n",
"val_hooks = [ScoreHistory(sourceAccuracyValidator)]\n",
"\n",
"more_new_trainer = Ignite(\n",
" adapter, val_hooks=val_hooks, checkpoint_fn=checkpoint_fn, device=device\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"from pytorch_adapt.hooks import FeaturesAndLogitsHook\n",
"\n",
"h1 = FeaturesAndLogitsHook()"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"ename": "KeyError",
"evalue": "in FeaturesAndLogitsHook: __call__\nin FeaturesHook: __call__\nFeaturesHook: Getting src\nFeaturesHook: Getting output: ['src_imgs_features']\nFeaturesHook: Using model G with inputs: src_imgs\nG",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[19], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m h1(datasets)\n",
"File \u001b[0;32m/media/10TB71/shashemi/miniconda3/envs/cdtrans/lib/python3.8/site-packages/pytorch_adapt/hooks/base.py:52\u001b[0m, in \u001b[0;36mBaseHook.__call__\u001b[0;34m(self, inputs, losses)\u001b[0m\n\u001b[1;32m 50\u001b[0m \u001b[39mtry\u001b[39;00m:\n\u001b[1;32m 51\u001b[0m inputs \u001b[39m=\u001b[39m c_f\u001b[39m.\u001b[39mmap_keys(inputs, \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mkey_map)\n\u001b[0;32m---> 52\u001b[0m x \u001b[39m=\u001b[39m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mcall(inputs, losses)\n\u001b[1;32m 53\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39misinstance\u001b[39m(x, (\u001b[39mbool\u001b[39m, np\u001b[39m.\u001b[39mbool_)):\n\u001b[1;32m 54\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mlogger\u001b[39m.\u001b[39mreset()\n",
"File \u001b[0;32m/media/10TB71/shashemi/miniconda3/envs/cdtrans/lib/python3.8/site-packages/pytorch_adapt/hooks/utils.py:109\u001b[0m, in \u001b[0;36mChainHook.call\u001b[0;34m(self, inputs, losses)\u001b[0m\n\u001b[1;32m 107\u001b[0m all_losses \u001b[39m=\u001b[39m {\u001b[39m*\u001b[39m\u001b[39m*\u001b[39mall_losses, \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mprev_losses}\n\u001b[1;32m 108\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mconditions[i](all_inputs, all_losses):\n\u001b[0;32m--> 109\u001b[0m x \u001b[39m=\u001b[39m h(all_inputs, all_losses)\n\u001b[1;32m 110\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[1;32m 111\u001b[0m x \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39malts[i](all_inputs, all_losses)\n",
"File \u001b[0;32m/media/10TB71/shashemi/miniconda3/envs/cdtrans/lib/python3.8/site-packages/pytorch_adapt/hooks/base.py:52\u001b[0m, in \u001b[0;36mBaseHook.__call__\u001b[0;34m(self, inputs, losses)\u001b[0m\n\u001b[1;32m 50\u001b[0m \u001b[39mtry\u001b[39;00m:\n\u001b[1;32m 51\u001b[0m inputs \u001b[39m=\u001b[39m c_f\u001b[39m.\u001b[39mmap_keys(inputs, \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mkey_map)\n\u001b[0;32m---> 52\u001b[0m x \u001b[39m=\u001b[39m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mcall(inputs, losses)\n\u001b[1;32m 53\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39misinstance\u001b[39m(x, (\u001b[39mbool\u001b[39m, np\u001b[39m.\u001b[39mbool_)):\n\u001b[1;32m 54\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mlogger\u001b[39m.\u001b[39mreset()\n",
"File \u001b[0;32m/media/10TB71/shashemi/miniconda3/envs/cdtrans/lib/python3.8/site-packages/pytorch_adapt/hooks/features.py:80\u001b[0m, in \u001b[0;36mBaseFeaturesHook.call\u001b[0;34m(self, inputs, losses)\u001b[0m\n\u001b[1;32m 78\u001b[0m func \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mmode_detached \u001b[39mif\u001b[39;00m detach \u001b[39melse\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mmode_with_grad\n\u001b[1;32m 79\u001b[0m in_keys \u001b[39m=\u001b[39m c_f\u001b[39m.\u001b[39mfilter(\u001b[39mself\u001b[39m\u001b[39m.\u001b[39min_keys, \u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39m^\u001b[39m\u001b[39m{\u001b[39;00mdomain\u001b[39m}\u001b[39;00m\u001b[39m\"\u001b[39m)\n\u001b[0;32m---> 80\u001b[0m func(inputs, outputs, domain, in_keys)\n\u001b[1;32m 82\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mcheck_outputs_requires_grad(outputs)\n\u001b[1;32m 83\u001b[0m \u001b[39mreturn\u001b[39;00m outputs, {}\n",
"File \u001b[0;32m/media/10TB71/shashemi/miniconda3/envs/cdtrans/lib/python3.8/site-packages/pytorch_adapt/hooks/features.py:106\u001b[0m, in \u001b[0;36mBaseFeaturesHook.mode_with_grad\u001b[0;34m(self, inputs, outputs, domain, in_keys)\u001b[0m\n\u001b[1;32m 104\u001b[0m output_keys \u001b[39m=\u001b[39m c_f\u001b[39m.\u001b[39mfilter(\u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_out_keys(), \u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39m^\u001b[39m\u001b[39m{\u001b[39;00mdomain\u001b[39m}\u001b[39;00m\u001b[39m\"\u001b[39m)\n\u001b[1;32m 105\u001b[0m output_vals \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mget_kwargs(inputs, output_keys)\n\u001b[0;32m--> 106\u001b[0m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49madd_if_new(\n\u001b[1;32m 107\u001b[0m outputs, output_keys, output_vals, inputs, \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mmodel_name, in_keys, domain\n\u001b[1;32m 108\u001b[0m )\n\u001b[1;32m 109\u001b[0m \u001b[39mreturn\u001b[39;00m output_keys, output_vals\n",
"File \u001b[0;32m/media/10TB71/shashemi/miniconda3/envs/cdtrans/lib/python3.8/site-packages/pytorch_adapt/hooks/features.py:133\u001b[0m, in \u001b[0;36mBaseFeaturesHook.add_if_new\u001b[0;34m(self, outputs, full_key, output_vals, inputs, model_name, in_keys, domain)\u001b[0m\n\u001b[1;32m 130\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39madd_if_new\u001b[39m(\n\u001b[1;32m 131\u001b[0m \u001b[39mself\u001b[39m, outputs, full_key, output_vals, inputs, model_name, in_keys, domain\n\u001b[1;32m 132\u001b[0m ):\n\u001b[0;32m--> 133\u001b[0m c_f\u001b[39m.\u001b[39;49madd_if_new(\n\u001b[1;32m 134\u001b[0m outputs,\n\u001b[1;32m 135\u001b[0m full_key,\n\u001b[1;32m 136\u001b[0m output_vals,\n\u001b[1;32m 137\u001b[0m inputs,\n\u001b[1;32m 138\u001b[0m model_name,\n\u001b[1;32m 139\u001b[0m in_keys,\n\u001b[1;32m 140\u001b[0m logger\u001b[39m=\u001b[39;49m\u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mlogger,\n\u001b[1;32m 141\u001b[0m )\n",
"File \u001b[0;32m/media/10TB71/shashemi/miniconda3/envs/cdtrans/lib/python3.8/site-packages/pytorch_adapt/utils/common_functions.py:96\u001b[0m, in \u001b[0;36madd_if_new\u001b[0;34m(d, key, x, kwargs, model_name, in_keys, other_args, logger)\u001b[0m\n\u001b[1;32m 94\u001b[0m condition \u001b[39m=\u001b[39m is_none\n\u001b[1;32m 95\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39many\u001b[39m(condition(y) \u001b[39mfor\u001b[39;00m y \u001b[39min\u001b[39;00m x):\n\u001b[0;32m---> 96\u001b[0m model \u001b[39m=\u001b[39m kwargs[model_name]\n\u001b[1;32m 97\u001b[0m input_vals \u001b[39m=\u001b[39m [kwargs[k] \u001b[39mfor\u001b[39;00m k \u001b[39min\u001b[39;00m in_keys] \u001b[39m+\u001b[39m \u001b[39mlist\u001b[39m(other_args\u001b[39m.\u001b[39mvalues())\n\u001b[1;32m 98\u001b[0m new_x \u001b[39m=\u001b[39m try_use_model(model, model_name, input_vals)\n",
"\u001b[0;31mKeyError\u001b[0m: in FeaturesAndLogitsHook: __call__\nin FeaturesHook: __call__\nFeaturesHook: Getting src\nFeaturesHook: Getting output: ['src_imgs_features']\nFeaturesHook: Using model G with inputs: src_imgs\nG"
]
}
],
"source": [
"h1(datasets)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "cdtrans",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.15 (default, Nov 24 2022, 15:19:38) \n[GCC 11.2.0]"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "959b82c3a41427bdf7d14d4ba7335271e0c50cfcddd70501934b27dcc36968ad"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}