| @@ -3,3 +3,6 @@ Drug/Dataset/DDI/DrugBank/drugbank_all_full_database.xml.zip | |||
| Drug/Dataset/DDI/SNAP Stanford/ChCh-Miner_durgbank-chem-chem.tsv.gz | |||
| Drug/Dataset/DDI/DrugBank/raw/Drugbank_drug_interactions.tsv | |||
| Drug/Dataset/DDI/SNAP Stanford/ChCh-Miner_durgbank-chem-chem.tsv | |||
| Cell/data/DTI/SNAP Stanford/ChG-Miner_miner-chem-gene.tsv | |||
| Cell/data/DTI/SNAP Stanford/ChG-Miner_miner-chem-gene.tsv.gz | |||
| Drug/Dataset/Smiles/drugbank_all_structure_links.csv.zip | |||
| @@ -15,16 +15,16 @@ class GCN(torch.nn.Module): | |||
| return x | |||
| model = GCN(dataset.num_features, dataset.num_classes) | |||
| model.train() | |||
| optimizer = torch.optim.Adam(model.parameters(), lr=0.001) | |||
| # model = GCN(dataset.num_features, dataset.num_classes) | |||
| # model.train() | |||
| # optimizer = torch.optim.Adam(model.parameters(), lr=0.001) | |||
| print("Training on CPU.") | |||
| # print("Training on CPU.") | |||
| for epoch in range(1, 6): | |||
| optimizer.zero_grad() | |||
| out = model(data.x, data.edge_index, data.edge_attr) | |||
| loss = F.cross_entropy(out, data.y) | |||
| loss.backward() | |||
| optimizer.step() | |||
| print(f"Epoch: {epoch}, Loss: {loss}") | |||
| # for epoch in range(1, 6): | |||
| # optimizer.zero_grad() | |||
| # out = model(data.x, data.edge_index, data.edge_attr) | |||
| # loss = F.cross_entropy(out, data.y) | |||
| # loss.backward() | |||
| # optimizer.step() | |||
| # print(f"Epoch: {epoch}, Loss: {loss}") | |||
| @@ -0,0 +1,23 @@ | |||
| import numpy as np | |||
| import torch | |||
| import torch.nn.functional as F | |||
| import torch.nn as nn | |||
| from models import GCN | |||
| from datasets import DDInteractionDataset | |||
| if __name__ == '__main__': | |||
| model = GCN(dataset.num_features, dataset.num_classes) | |||
| model.train() | |||
| optimizer = torch.optim.Adam(model.parameters(), lr=0.001) | |||
| # training on CPU | |||
| for epoch in range(1, 6): | |||
| optimizer.zero_grad() | |||
| out = model(data.x, data.edge_index, data.edge_attr) | |||
| loss = F.cross_entropy(out, data.y) | |||
| loss.backward() | |||
| optimizer.step() | |||
| print(f"Epoch: {epoch}, Loss: {loss}") | |||