Drug/Dataset/DDI/SNAP Stanford/ChCh-Miner_durgbank-chem-chem.tsv.gz | Drug/Dataset/DDI/SNAP Stanford/ChCh-Miner_durgbank-chem-chem.tsv.gz | ||||
Drug/Dataset/DDI/DrugBank/raw/Drugbank_drug_interactions.tsv | Drug/Dataset/DDI/DrugBank/raw/Drugbank_drug_interactions.tsv | ||||
Drug/Dataset/DDI/SNAP Stanford/ChCh-Miner_durgbank-chem-chem.tsv | Drug/Dataset/DDI/SNAP Stanford/ChCh-Miner_durgbank-chem-chem.tsv | ||||
Cell/data/DTI/SNAP Stanford/ChG-Miner_miner-chem-gene.tsv | |||||
Cell/data/DTI/SNAP Stanford/ChG-Miner_miner-chem-gene.tsv.gz | |||||
Drug/Dataset/Smiles/drugbank_all_structure_links.csv.zip |
return x | return x | ||||
model = GCN(dataset.num_features, dataset.num_classes) | |||||
model.train() | |||||
optimizer = torch.optim.Adam(model.parameters(), lr=0.001) | |||||
# model = GCN(dataset.num_features, dataset.num_classes) | |||||
# model.train() | |||||
# optimizer = torch.optim.Adam(model.parameters(), lr=0.001) | |||||
print("Training on CPU.") | |||||
# print("Training on CPU.") | |||||
for epoch in range(1, 6): | |||||
optimizer.zero_grad() | |||||
out = model(data.x, data.edge_index, data.edge_attr) | |||||
loss = F.cross_entropy(out, data.y) | |||||
loss.backward() | |||||
optimizer.step() | |||||
print(f"Epoch: {epoch}, Loss: {loss}") | |||||
# for epoch in range(1, 6): | |||||
# optimizer.zero_grad() | |||||
# out = model(data.x, data.edge_index, data.edge_attr) | |||||
# loss = F.cross_entropy(out, data.y) | |||||
# loss.backward() | |||||
# optimizer.step() | |||||
# print(f"Epoch: {epoch}, Loss: {loss}") |
import numpy as np | |||||
import torch | |||||
import torch.nn.functional as F | |||||
import torch.nn as nn | |||||
from models import GCN | |||||
from datasets import DDInteractionDataset | |||||
if __name__ == '__main__': | |||||
model = GCN(dataset.num_features, dataset.num_classes) | |||||
model.train() | |||||
optimizer = torch.optim.Adam(model.parameters(), lr=0.001) | |||||
# training on CPU | |||||
for epoch in range(1, 6): | |||||
optimizer.zero_grad() | |||||
out = model(data.x, data.edge_index, data.edge_attr) | |||||
loss = F.cross_entropy(out, data.y) | |||||
loss.backward() | |||||
optimizer.step() | |||||
print(f"Epoch: {epoch}, Loss: {loss}") |