@@ -2,6 +2,7 @@ from trainer import * | |||
from utils import * | |||
from sampler import * | |||
import json | |||
import torch | |||
import argparse | |||
@@ -9,23 +10,23 @@ import argparse | |||
def get_params(): | |||
args = argparse.ArgumentParser() | |||
args.add_argument("-data", "--dataset", default="electronics", type=str) | |||
args.add_argument("-seed", "--seed", default=None, type=int) | |||
args.add_argument("-seed", "--seed", default=7, type=int) | |||
args.add_argument("-K", "--K", default=3, type=int) #NUMBER OF SHOT | |||
args.add_argument("-dim", "--embed_dim", default=100, type=int) | |||
args.add_argument("-dim", "--embed_dim", default=128, type=int) | |||
args.add_argument("-bs", "--batch_size", default=1024, type=int) | |||
args.add_argument("-lr", "--learning_rate", default=0.001, type=float) | |||
args.add_argument("-epo", "--epoch", default=100000, type=int) | |||
args.add_argument("-prt_epo", "--print_epoch", default=100, type=int) | |||
args.add_argument("-eval_epo", "--eval_epoch", default=1000, type=int) | |||
args.add_argument("-eval_epo", "--eval_epoch", default=500, type=int) | |||
args.add_argument("-b", "--beta", default=5, type=float) | |||
args.add_argument("-m", "--margin", default=1, type=float) | |||
args.add_argument("-p", "--dropout_p", default=0.5, type=float) | |||
args.add_argument("-gpu", "--device", default=0, type=int) | |||
args.add_argument("--number_of_neg",default=5,type=int) | |||
args.add_argument("--number_of_neg",default=1,type=int) | |||
@@ -35,17 +36,24 @@ def get_params(): | |||
params[k] = v | |||
# params['device'] = torch.device('cuda:'+str(args.device)) | |||
params['device'] = args.device | |||
params['device'] = torch.device('cuda:'+str(args.device)) | |||
# params['device'] = args.device | |||
# params['device'] = torch.device('cpu') | |||
return params, args | |||
if __name__ == '__main__': | |||
print(torch.__version__) | |||
print(torch.cuda.is_available()) | |||
params, args = get_params() | |||
params['varset_size'] = 1000 | |||
params['alpha'] = 0.5 | |||
params['S1'] = 40 | |||
params['S2_div_S1'] = 1 | |||
params['temperature'] = 1.0 | |||
params['warmup'] = 20.0 | |||
if params['seed'] is not None: | |||
SEED = params['seed'] | |||
torch.manual_seed(SEED) | |||
@@ -57,15 +65,14 @@ if __name__ == '__main__': | |||
print("===============", torch.cuda.device_count(), "=======") | |||
user_train, usernum_train, itemnum, user_input_test, user_test, user_input_valid, user_valid = data_load(args.dataset, args.K) | |||
sampler = WarpSampler(user_train, usernum_train, itemnum, batch_size=args.batch_size, maxlen=args.K, n_workers=3,params=params) | |||
sampler = WarpSampler(user_train, usernum_train, itemnum, batch_size=args.batch_size, maxlen=args.K, n_workers=3) | |||
sampler_test = DataLoader(user_input_test, user_test, itemnum, params) | |||
sampler_valid = DataLoader(user_input_valid, user_valid, itemnum, params) | |||
print("===============", torch.cuda.device_count(), "=======") | |||
trainer = Trainer([sampler, sampler_valid, sampler_test], itemnum, params) | |||
trainer = Trainer([sampler, sampler_valid, sampler_test], itemnum, params,usernum_train,user_train) | |||
print("===============", torch.cuda.device_count(), "=======") | |||
trainer.train() | |||
@@ -2,6 +2,9 @@ from collections import OrderedDict | |||
import torch | |||
import torch.nn as nn | |||
from torch.nn import functional as F | |||
from numpy import linalg as LA | |||
import numpy as np | |||
class Embedding(nn.Module): | |||
def __init__(self, num_ent, parameter): | |||
@@ -9,7 +12,7 @@ class Embedding(nn.Module): | |||
# self.device = torch.device('cuda:0') | |||
self.device = torch.device(parameter['device']) | |||
self.es = parameter['embed_dim'] | |||
self.embedding = nn.Embedding(num_ent + 1, self.es) | |||
nn.init.xavier_uniform_(self.embedding.weight) | |||
@@ -18,6 +21,7 @@ class Embedding(nn.Module): | |||
idx = torch.LongTensor(idx).to(self.device) | |||
return self.embedding(idx) | |||
class MetaLearner(nn.Module): | |||
def __init__(self, K, embed_size=100, num_hidden1=500, num_hidden2=200, out_size=100, dropout_p=0.5): | |||
super(MetaLearner, self).__init__() | |||
@@ -28,22 +32,31 @@ class MetaLearner(nn.Module): | |||
self.out_size = embed_size | |||
self.hidden_size = embed_size | |||
# self.rnn = nn.LSTM(embed_size,self.hidden_size,2,dropout=0.2) | |||
self.rnn = nn.GRU(input_size=embed_size,hidden_size=self.hidden_size, num_layers=1) | |||
self.rnn = nn.GRU(input_size=embed_size, hidden_size=self.embed_size * 2, num_layers=1) | |||
self.activation = nn.LeakyReLU() | |||
self.linear = nn.Linear(self.embed_size * 2, self.embed_size) | |||
self.norm = nn.BatchNorm1d(num_features=self.out_size) | |||
# nn.init.xavier_normal_(self.rnn.all_weights) | |||
# nn.init.xavier_normal_(self.linear.weight) | |||
def forward(self, inputs): | |||
def forward(self, inputs, evaluation=False): | |||
size = inputs.shape | |||
x = torch.stack([inputs[:,0,0,:],inputs[:,0,1,:],inputs[:,1,1,:]],dim=1) | |||
x = x.transpose(0,1) | |||
x = torch.stack([inputs[:, 0, 0, :], inputs[:, 0, 1, :], inputs[:, 1, 1, :]], dim=1) | |||
x = x.transpose(0, 1) | |||
# _,(x,c) = self.rnn(x) | |||
x,c = self.rnn(x) | |||
x, c = self.rnn(x) | |||
x = x[-1] | |||
x = x.squeeze(0) | |||
if not evaluation: | |||
x = x.squeeze(0) | |||
x = self.activation(x) | |||
x = self.linear(x) | |||
x = self.norm(x) | |||
return x.view(size[0], 1, 1, self.out_size) | |||
class EmbeddingLearner(nn.Module): | |||
def __init__(self): | |||
super(EmbeddingLearner, self).__init__() | |||
@@ -54,57 +67,61 @@ class EmbeddingLearner(nn.Module): | |||
n_score = score[:, pos_num:] | |||
return p_score, n_score | |||
def bpr_loss(p_scores, n_values,device): | |||
def bpr_loss(p_scores, n_values, device): | |||
ratio = int(n_values.shape[1] / p_scores.shape[1]) | |||
temp_pvalues = torch.tensor([],device=device) | |||
temp_pvalues = torch.tensor([], device=device) | |||
for i in range(p_scores.shape[1]): | |||
temp_pvalues = torch.cat((temp_pvalues, p_scores[:, i, None].expand(-1, ratio)), dim=1) | |||
d = torch.sub(temp_pvalues,n_values) | |||
d = torch.sub(temp_pvalues, n_values) | |||
t = F.logsigmoid(d) | |||
loss = -1 * (1.0/n_values.shape[1]) * t.sum(dim=1) | |||
loss = -1 * (1.0 / n_values.shape[1]) * t.sum(dim=1) | |||
loss = loss.sum(dim=0) | |||
return loss | |||
def bpr_max_loss(p_scores, n_values,device): | |||
s = F.softmax(n_values,dim=1) | |||
def bpr_max_loss(p_scores, n_values, device): | |||
s = F.softmax(n_values, dim=1) | |||
ratio = int(n_values.shape[1] / p_scores.shape[1]) | |||
temp_pvalues = torch.tensor([],device=device) | |||
temp_pvalues = torch.tensor([], device=device) | |||
for i in range(p_scores.shape[1]): | |||
temp_pvalues = torch.cat((temp_pvalues,p_scores[:,i,None].expand(-1,ratio)),dim=1) | |||
temp_pvalues = torch.cat((temp_pvalues, p_scores[:, i, None].expand(-1, ratio)), dim=1) | |||
d = torch.sigmoid(torch.sub(temp_pvalues,n_values)) | |||
t = torch.mul(s,d) | |||
d = torch.sigmoid(torch.sub(temp_pvalues, n_values)) | |||
t = torch.mul(s, d) | |||
loss = -1 * torch.log(t.sum(dim=1)) | |||
loss = loss.sum() | |||
return loss | |||
def bpr_max_loss_regularized(p_scores, n_values,device,l=0.0001): | |||
s = F.softmax(n_values,dim=1) | |||
def bpr_max_loss_regularized(p_scores, n_values, device, l=0.0001): | |||
s = F.softmax(n_values, dim=1) | |||
ratio = int(n_values.shape[1] / p_scores.shape[1]) | |||
temp_pvalues = torch.tensor([],device=device) | |||
temp_pvalues = torch.tensor([], device=device) | |||
for i in range(p_scores.shape[1]): | |||
temp_pvalues = torch.cat((temp_pvalues,p_scores[:,i,None].expand(-1,ratio)),dim=1) | |||
temp_pvalues = torch.cat((temp_pvalues, p_scores[:, i, None].expand(-1, ratio)), dim=1) | |||
d = torch.sigmoid(torch.sub(temp_pvalues,n_values)) | |||
t = torch.mul(s,d) | |||
d = torch.sigmoid(torch.sub(temp_pvalues, n_values)) | |||
t = torch.mul(s, d) | |||
loss = -1 * torch.log(t.sum(dim=1)) | |||
loss = loss.sum() | |||
loss2 = torch.mul(s,n_values**2) | |||
loss2 = torch.mul(s, n_values ** 2) | |||
loss2 = loss2.sum(dim=1) | |||
loss2 = loss2.sum() | |||
return loss + l*loss2 | |||
return loss + l * loss2 | |||
def top_loss(p_scores, n_values,device): | |||
def top_loss(p_scores, n_values, device): | |||
ratio = int(n_values.shape[1] / p_scores.shape[1]) | |||
temp_pvalues = torch.tensor([],device=device) | |||
temp_pvalues = torch.tensor([], device=device) | |||
for i in range(p_scores.shape[1]): | |||
temp_pvalues = torch.cat((temp_pvalues, p_scores[:, i, None].expand(-1, ratio)), dim=1) | |||
t1 = torch.sigmoid(torch.sub(n_values , temp_pvalues)) | |||
t2 = torch.sigmoid(torch.pow(n_values,2)) | |||
t = torch.add(t1,t2) | |||
t1 = torch.sigmoid(torch.sub(n_values, temp_pvalues)) | |||
t2 = torch.sigmoid(torch.pow(n_values, 2)) | |||
t = torch.add(t1, t2) | |||
t = t.sum(dim=1) | |||
loss = t / n_values.shape[1] | |||
loss = loss.sum(dim=0) | |||
@@ -123,12 +140,12 @@ class MetaTL(nn.Module): | |||
self.embedding = Embedding(itemnum, parameter) | |||
self.relation_learner = MetaLearner(parameter['K'] - 1, embed_size=self.embed_dim, num_hidden1=500, | |||
num_hidden2=200, out_size=100, dropout_p=0) | |||
num_hidden2=200, out_size=100, dropout_p=0) | |||
self.embedding_learner = EmbeddingLearner() | |||
# self.loss_func = nn.MarginRankingLoss(self.margin) | |||
self.loss_func = nn.MarginRankingLoss(self.margin) | |||
# self.loss_func = bpr_max_loss | |||
self.loss_func = bpr_loss | |||
# self.loss_func = bpr_loss | |||
self.rel_q_sharing = dict() | |||
@@ -139,19 +156,33 @@ class MetaTL(nn.Module): | |||
negative[:, :, 1, :]], 1).unsqueeze(2) | |||
return pos_neg_e1, pos_neg_e2 | |||
def fast_forward(self, tasks, curr_rel=''): | |||
with torch.no_grad(): | |||
sup = self.embedding(tasks) | |||
K = sup.shape[1] | |||
rel_q = self.rel_q_sharing[curr_rel] | |||
sup_neg_e1, sup_neg_e2 = sup[:, :, 0, :], sup[:, :, 1, :] | |||
a = sup_neg_e1.cpu().detach().numpy() | |||
b = rel_q.squeeze(1).cpu().detach().numpy() | |||
b = np.tile(b, (1, a.shape[-2], 1)) | |||
c = sup_neg_e2.cpu().detach().numpy() | |||
# print(a.shape,b.shape,c.shape) | |||
scores = -LA.norm(a + b - c, 2, -1) | |||
return scores | |||
def forward(self, task, iseval=False, curr_rel=''): | |||
# transfer task string into embedding | |||
support, support_negative, query, negative = [self.embedding(t) for t in task] | |||
K = support.shape[1] # num of K | |||
K = support.shape[1] # num of K | |||
num_sn = support_negative.shape[1] # num of support negative | |||
num_q = query.shape[1] # num of query | |||
num_n = negative.shape[1] # num of query negative | |||
num_q = query.shape[1] # num of query | |||
num_n = negative.shape[1] # num of query negative | |||
rel = self.relation_learner(support) | |||
rel = self.relation_learner(support, iseval) | |||
rel.retain_grad() | |||
rel_s = rel.expand(-1, K+num_sn, -1, -1) | |||
rel_s = rel.expand(-1, K + num_sn, -1, -1) | |||
if iseval and curr_rel != '' and curr_rel in self.rel_q_sharing.keys(): | |||
rel_q = self.rel_q_sharing[curr_rel] | |||
@@ -160,23 +191,23 @@ class MetaTL(nn.Module): | |||
p_score, n_score = self.embedding_learner(sup_neg_e1, sup_neg_e2, rel_s, K) | |||
# y = torch.Tensor([1]).to(self.device) | |||
y = torch.Tensor([1]).to(self.device) | |||
self.zero_grad() | |||
# sorted,indecies = torch.sort(n_score, descending=True,dim=1) | |||
# n_values = sorted[:,0:p_score.shape[1]] | |||
# loss = self.loss_func(p_score, n_values, y) | |||
loss = self.loss_func(p_score,n_score,device=self.device) | |||
loss = self.loss_func(p_score, n_score, y) | |||
# loss = self.loss_func(p_score,n_score,device=self.device) | |||
loss.backward(retain_graph=True) | |||
grad_meta = rel.grad | |||
rel_q = rel - self.beta*grad_meta | |||
rel_q = rel - self.beta * grad_meta | |||
self.rel_q_sharing[curr_rel] = rel_q | |||
rel_q = rel_q.expand(-1, num_q + num_n, -1, -1) | |||
que_neg_e1, que_neg_e2 = self.split_concat(query, negative) | |||
que_neg_e1, que_neg_e2 = self.split_concat(query, negative) | |||
p_score, n_score = self.embedding_learner(que_neg_e1, que_neg_e2, rel_q, num_q) | |||
return p_score, n_score |
@@ -1,106 +1,63 @@ | |||
import sys | |||
import copy | |||
import torch | |||
import random | |||
import numpy as np | |||
from collections import defaultdict, Counter | |||
from multiprocessing import Process, Queue | |||
def random_neq(l, r, s, user_train,usernum): | |||
# t = np.random.randint(l, r) | |||
# while t in s: | |||
# t = np.random.randint(l, r) | |||
# return t | |||
# user = np.random.choice(1, usernum + 1) | |||
def random_neq(l, r, s): | |||
t = np.random.randint(l, r) | |||
while t in s: | |||
t = np.random.randint(l, r) | |||
return t | |||
# user = random.randint(1,usernum+1) | |||
# while len(user_train[user])<3: | |||
# user = random.randint(1, usernum + 1) | |||
# candid_item = user_train[user][random.randint(0, len(user_train[user])-1)] | |||
# | |||
# while candid_item in s: | |||
# while len(user_train[user]) < 3: | |||
# user = random.randint(1, usernum + 1) | |||
# candid_item = user_train[user][random.randint(0, len(user_train[user])-1)] | |||
# return candid_item | |||
user = random.choice(list(user_train.keys())) | |||
item = random.choice(user_train[user]) | |||
def sample_function_mixed(user_train, usernum, itemnum, batch_size, maxlen, result_queue, SEED): | |||
def sample(): | |||
while item in s: | |||
user = random.choice(list(user_train.keys())) | |||
item = random.choice(user_train[user]) | |||
return item | |||
def random_negetive_batch(l, r, s, user_train,usernum, batch_users): | |||
user = np.random.choice(batch_users) | |||
candid_item = user_train[user][np.random.randint(0, len(user_train[user]))] | |||
while candid_item in s: | |||
user = np.random.choice(batch_users) | |||
candid_item = user_train[user][np.random.randint(0, len(user_train[user]))] | |||
return candid_item | |||
def sample_function_mixed(user_train, usernum, itemnum, batch_size, maxlen, result_queue, SEED,number_of_neg): | |||
def sample(user,batch_users): | |||
if random.random()<=0.5: | |||
# user = np.random.randint(1, usernum + 1) | |||
# while len(user_train[user]) <= 1: user = np.random.randint(1, usernum + 1) | |||
if random.random() < 0.5: | |||
user = np.random.randint(1, usernum + 1) | |||
while len(user_train[user]) <= 1: user = np.random.randint(1, usernum + 1) | |||
seq = np.zeros([maxlen], dtype=np.int32) | |||
pos = np.zeros([maxlen], dtype=np.int32) | |||
neg = np.zeros([(maxlen-1)*number_of_neg + 1], dtype=np.int32) | |||
neg = np.zeros([maxlen], dtype=np.int32) | |||
if len(user_train[user]) < maxlen: | |||
nxt_idx = len(user_train[user]) - 1 | |||
else: | |||
nxt_idx = np.random.randint(maxlen,len(user_train[user])) | |||
nxt_idx = np.random.randint(maxlen, len(user_train[user])) | |||
nxt = user_train[user][nxt_idx] | |||
idx = maxlen - 1 | |||
ts = set(user_train[user]) | |||
for i in reversed(user_train[user][(nxt_idx - maxlen) : nxt_idx ]): | |||
for i in reversed(user_train[user][min(0, nxt_idx - 1 - maxlen): nxt_idx - 1]): | |||
seq[idx] = i | |||
pos[idx] = nxt | |||
# if nxt != 0: neg[idx] = random_neq(1, itemnum + 1, ts, user_train,usernum) | |||
if nxt != 0: neg[idx] = random_neq(1, itemnum + 1, ts) | |||
nxt = i | |||
idx -= 1 | |||
if idx == -1: break | |||
for i in range(len(neg)): | |||
# neg[i] = random_neq(1, itemnum + 1, ts, user_train,usernum) | |||
neg[i] = random_negetive_batch(1, itemnum + 1, ts, user_train, usernum, batch_users = batch_users) | |||
curr_rel = user | |||
support_triples, support_negative_triples, query_triples, negative_triples = [], [], [], [] | |||
for idx in range(maxlen-1): | |||
support_triples.append([seq[idx],curr_rel,pos[idx]]) | |||
# support_negative_triples.append([seq[idx],curr_rel,neg[idx]]) | |||
# support_negative_triples.append([seq[-1], curr_rel, neg[idx]]) | |||
# for idx in range(maxlen*30 - 1): | |||
# support_negative_triples.append([seq[-1], curr_rel, neg[idx]]) | |||
for j in range(number_of_neg): | |||
for idx in range(maxlen-1): | |||
support_negative_triples.append([seq[idx], curr_rel, neg[j*(maxlen-1) + idx]]) | |||
query_triples.append([seq[-1],curr_rel,pos[-1]]) | |||
negative_triples.append([seq[-1],curr_rel,neg[-1]]) | |||
for idx in range(maxlen - 1): | |||
support_triples.append([seq[idx], curr_rel, pos[idx]]) | |||
support_negative_triples.append([seq[idx], curr_rel, neg[idx]]) | |||
query_triples.append([seq[-1], curr_rel, pos[-1]]) | |||
negative_triples.append([seq[-1], curr_rel, neg[-1]]) | |||
return support_triples, support_negative_triples, query_triples, negative_triples, curr_rel | |||
else: | |||
# print("bug happened in sample_function_mixed") | |||
# user = np.random.randint(1, usernum + 1) | |||
# while len(user_train[user]) <= 1: user = np.random.randint(1, usernum + 1) | |||
user = np.random.randint(1, usernum + 1) | |||
while len(user_train[user]) <= 1: user = np.random.randint(1, usernum + 1) | |||
seq = np.zeros([maxlen], dtype=np.int32) | |||
pos = np.zeros([maxlen], dtype=np.int32) | |||
neg = np.zeros([maxlen*number_of_neg], dtype=np.int32) | |||
neg = np.zeros([maxlen], dtype=np.int32) | |||
list_idx = random.sample([i for i in range(len(user_train[user]))], maxlen + 1) | |||
list_item = [user_train[user][i] for i in sorted(list_idx)] | |||
@@ -112,63 +69,47 @@ def sample_function_mixed(user_train, usernum, itemnum, batch_size, maxlen, resu | |||
for i in reversed(list_item[:-1]): | |||
seq[idx] = i | |||
pos[idx] = nxt | |||
# if nxt != 0: neg[idx] = random_neq(1, itemnum + 1, ts) | |||
if nxt != 0: neg[idx] = random_neq(1, itemnum + 1, ts) | |||
nxt = i | |||
idx -= 1 | |||
if idx == -1: break | |||
curr_rel = user | |||
support_triples, support_negative_triples, query_triples, negative_triples = [], [], [], [] | |||
for i in range(len(neg)): | |||
# neg[i] = random_neq(1, itemnum + 1, ts, user_train,usernum) | |||
neg[i] = random_negetive_batch(1, itemnum + 1, ts, user_train, usernum, batch_users = batch_users) | |||
for j in range(number_of_neg): | |||
for idx in range(maxlen-1): | |||
support_negative_triples.append([seq[idx], curr_rel, neg[j*maxlen + idx]]) | |||
for idx in range(maxlen-1): | |||
support_triples.append([seq[idx],curr_rel,pos[idx]]) | |||
# support_negative_triples.append([seq[idx],curr_rel,neg[idx]]) | |||
query_triples.append([seq[-1],curr_rel,pos[-1]]) | |||
negative_triples.append([seq[-1],curr_rel,neg[-1]]) | |||
for idx in range(maxlen - 1): | |||
support_triples.append([seq[idx], curr_rel, pos[idx]]) | |||
support_negative_triples.append([seq[idx], curr_rel, neg[idx]]) | |||
query_triples.append([seq[-1], curr_rel, pos[-1]]) | |||
negative_triples.append([seq[-1], curr_rel, neg[-1]]) | |||
return support_triples, support_negative_triples, query_triples, negative_triples, curr_rel | |||
np.random.seed(SEED) | |||
while True: | |||
one_batch = [] | |||
users = [] | |||
for i in range(batch_size): | |||
user = np.random.randint(1, usernum + 1) | |||
while len(user_train[user]) <= 1: user = np.random.randint(1, usernum + 1) | |||
users.append(user) | |||
for i in range(batch_size): | |||
one_batch.append(sample(user = users[i], batch_users = users)) | |||
one_batch.append(sample()) | |||
support, support_negative, query, negative, curr_rel = zip(*one_batch) | |||
result_queue.put(([support, support_negative, query, negative], curr_rel)) | |||
class WarpSampler(object): | |||
def __init__(self, User, usernum, itemnum, batch_size=64, maxlen=10, n_workers=1,params = None): | |||
def __init__(self, User, usernum, itemnum, batch_size=64, maxlen=10, n_workers=1): | |||
self.result_queue = Queue(maxsize=n_workers * 10) | |||
self.processors = [] | |||
for i in range(n_workers): | |||
self.processors.append( | |||
Process(target=sample_function_mixed, args=(User, | |||
usernum, | |||
itemnum, | |||
batch_size, | |||
maxlen, | |||
self.result_queue, | |||
np.random.randint(2e9), | |||
params['number_of_neg'] | |||
))) | |||
usernum, | |||
itemnum, | |||
batch_size, | |||
maxlen, | |||
self.result_queue, | |||
np.random.randint(2e9) | |||
))) | |||
self.processors[-1].daemon = True | |||
self.processors[-1].start() | |||
@@ -179,5 +120,3 @@ class WarpSampler(object): | |||
for p in self.processors: | |||
p.terminate() | |||
p.join() | |||
@@ -1,14 +1,18 @@ | |||
from models import * | |||
import os | |||
import sys | |||
import torch | |||
import shutil | |||
import logging | |||
import numpy as np | |||
import random | |||
import copy | |||
from operator import itemgetter | |||
import gc | |||
class Trainer: | |||
def __init__(self, data_loaders, itemnum, parameter): | |||
def __init__(self, data_loaders, itemnum, parameter, user_train_num, user_train): | |||
# print(user_train) | |||
self.parameter = parameter | |||
# data loader | |||
self.train_data_loader = data_loaders[0] | |||
@@ -18,21 +22,209 @@ class Trainer: | |||
self.batch_size = parameter['batch_size'] | |||
self.learning_rate = parameter['learning_rate'] | |||
self.epoch = parameter['epoch'] | |||
# self.print_epoch = parameter['print_epoch'] | |||
# self.eval_epoch = parameter['eval_epoch'] | |||
# self.device = torch.device(parameter['device']) | |||
self.device = parameter['device'] | |||
self.MetaTL = MetaTL(itemnum, parameter) | |||
self.MetaTL.to(parameter['device']) | |||
self.optimizer = torch.optim.Adam(self.MetaTL.parameters(), self.learning_rate) | |||
if parameter['eval_epoch']: | |||
self.eval_epoch = parameter['eval_epoch'] | |||
else: | |||
self.eval_epoch = 1000 | |||
self.varset_size = parameter['varset_size'] | |||
self.user_train = user_train | |||
self.warmup = parameter['warmup'] | |||
self.alpha = parameter['alpha'] | |||
self.S1 = parameter['S1'] | |||
self.S2_div_S1 = parameter['S2_div_S1'] | |||
self.temperature = parameter['temperature'] | |||
self.itemnum = itemnum | |||
self.user_train_num = user_train_num | |||
# init the two candidate sets for monitoring variance | |||
self.candidate_cur = np.random.choice(itemnum, [user_train_num + 1, self.varset_size]) | |||
# for i in range(1,user_train_num+1): | |||
# for j in range(self.varset_size): | |||
# while self.candidate_cur[i, j] in user_train[i]: | |||
# self.candidate_cur[i, j] = random.randint(1, itemnum) | |||
# self.candidate_nxt = [np.random.choice(itemnum, [user_train_num+1, self.varset_size]) for _ in range(5)] | |||
# for c in range(5): | |||
# for i in range(1,user_train_num+1): | |||
# for j in range(self.varset_size): | |||
# while self.candidate_nxt[c][i, j] in user_train[i]: | |||
# self.candidate_nxt[c][i, j] = random.randint(1, itemnum) | |||
self.Mu_idx = {} | |||
for i in range(user_train_num + 1): | |||
Mu_idx_tmp = random.sample(list(range(self.varset_size)), self.S1) | |||
self.Mu_idx[i] = Mu_idx_tmp | |||
# todo : calculate score of positive items | |||
self.score_cand_cur = {} | |||
self.score_pos_cur = {} | |||
# final candidate after execution of change_mu (after one_step) (for later epochs) | |||
self.final_negative_items = {} | |||
def change_mu(self, p_score, n_score, epoch_cur, users, train_task): | |||
negitems = {} | |||
negitems_candidates_all = {} | |||
# for i in users: | |||
# negitems_candidates_all[i] = self.Mu_idx[i] | |||
negitems_candidates_all = self.Mu_idx.copy() | |||
ratings_positems = p_score.cpu().detach().numpy() | |||
ratings_positems = np.reshape(ratings_positems, [-1]) | |||
# added | |||
cnt = 0 | |||
for i in users: | |||
self.score_pos_cur[i] = ratings_positems[cnt] | |||
cnt += 1 | |||
Mu_items_all = {index: value[negitems_candidates_all[i]] for index, value in enumerate(self.candidate_cur)} | |||
task = np.array(train_task[2]) | |||
task = np.tile(task, reps=(1, self.S1, 1)) | |||
task[:, :, 2] = np.array(itemgetter(*users)(Mu_items_all)) | |||
ratings_candidates_all = self.MetaTL.fast_forward(task, users) | |||
hisscore_candidates_all = [self.score_cand_cur[i][:, negitems_candidates_all[i]] for user in users] | |||
hisscore_pos_all = ratings_positems.copy() | |||
hisscore_candidates_all = np.array(hisscore_candidates_all).transpose((1, 0, 2)) | |||
hisscore_pos_all = np.array(hisscore_pos_all) | |||
hisscore_pos_all = hisscore_pos_all[:, np.newaxis] | |||
hisscore_pos_all = np.tile(hisscore_pos_all, (hisscore_candidates_all.shape[0], 1, 1)) | |||
hislikelihood_candidates_all = 1 / (1 + np.exp(hisscore_pos_all - hisscore_candidates_all)) | |||
mean_candidates_all = np.mean(hislikelihood_candidates_all[:, :], axis=0) | |||
variance_candidates_all = np.zeros(mean_candidates_all.shape) | |||
for i in range(hislikelihood_candidates_all.shape[0]): | |||
variance_candidates_all += (hislikelihood_candidates_all[i, :, :] - mean_candidates_all) ** 2 | |||
variance_candidates_all = np.sqrt(variance_candidates_all / hislikelihood_candidates_all.shape[0]) | |||
likelihood_candidates_all = \ | |||
1 / (1 + np.exp(np.expand_dims(ratings_positems, -1) - ratings_candidates_all)) | |||
# Top sampling strategy by score + alpha * std | |||
item_arg_all = None | |||
if self.alpha >= 0: | |||
# item_arg_all = np.argmax(likelihood_candidates_all + | |||
# self.alpha * min(1, epoch_cur / self.warmup) | |||
# * variance_candidates_all, axis=1) | |||
a = likelihood_candidates_all + self.alpha * min(1, epoch_cur / self.warmup) * variance_candidates_all | |||
item_arg_all = np.argpartition(a, kth=(-2), axis=1) | |||
item_arg_all = np.array(item_arg_all)[:, -2:] | |||
else: | |||
item_arg_all = np.argmax(variance_candidates_all, axis=1) | |||
# negitems = { user : self.candidate_cur[user][negitems_candidates_all[user][item_arg_all[index]]] for index,user in enumerate(users)} | |||
negitems0 = {user: self.candidate_cur[user][negitems_candidates_all[user][item_arg_all[index][0]]] for | |||
index, user in enumerate(users)} | |||
negitems1 = {user: self.candidate_cur[user][negitems_candidates_all[user][item_arg_all[index][1]]] for | |||
index, user in enumerate(users)} | |||
############################### | |||
for i in users: | |||
self.final_negative_items[i] = [negitems0[i], negitems1[i]] | |||
############################### | |||
# update Mu | |||
negitems_mu_candidates = {} | |||
for i in users: | |||
Mu_set = set(self.Mu_idx[i]) | |||
while len(self.Mu_idx[i]) < self.S1 * (1 + self.S2_div_S1): | |||
random_item = random.randint(0, self.candidate_cur.shape[1] - 1) | |||
while random_item in Mu_set: | |||
random_item = random.randint(0, self.candidate_cur.shape[1] - 1) | |||
self.Mu_idx[i].append(random_item) | |||
negitems_mu_candidates[i] = self.Mu_idx[i] | |||
negitems_mu = {} | |||
negitems_mu = {user: self.candidate_cur[user][negitems_mu_candidates[user]] for user in users} | |||
task = np.array(train_task[2]) | |||
task = np.tile(task, reps=(1, self.S1 * (1 + self.S2_div_S1), 1)) | |||
task[:, :, 2] = np.array(itemgetter(*users)(negitems_mu)) | |||
ratings_mu_candidates = self.MetaTL.fast_forward(task, users) | |||
ratings_mu_candidates = ratings_mu_candidates / self.temperature | |||
if np.any(np.isnan(ratings_mu_candidates)): | |||
print("nan happend in ratings_mu_candidates") | |||
ratings_mu_candidates = np.nan_to_num(ratings_mu_candidates) | |||
ratings_mu_candidates = np.exp(ratings_mu_candidates) / np.reshape( | |||
np.sum(np.exp(ratings_mu_candidates), axis=1), [-1, 1]) | |||
if np.any(np.isnan(ratings_mu_candidates)): | |||
print("nan happend__2 in ratings_mu_candidates") | |||
ratings_mu_candidates = self.MetaTL.fast_forward(task, users) | |||
ratings_mu_candidates = ratings_mu_candidates / self.temperature | |||
ratings_mu_candidates = ratings_mu_candidates + 100 | |||
ratings_mu_candidates = np.exp(ratings_mu_candidates) / np.reshape( | |||
np.sum(np.exp(ratings_mu_candidates), axis=1), [-1, 1]) | |||
user_set = set() | |||
cnt = 0 | |||
for i in users: | |||
if i in user_set: | |||
continue | |||
else: | |||
user_set.add(i) | |||
cache_arg = np.random.choice(self.S1 * (1 + self.S2_div_S1), self.S1, | |||
p=ratings_mu_candidates[cnt], replace=False) | |||
self.Mu_idx[i] = np.array(self.Mu_idx[i])[cache_arg].tolist() | |||
cnt += 1 | |||
second_cand = 0 | |||
del negitems, ratings_positems, Mu_items_all, task, ratings_candidates_all, hisscore_candidates_all, hisscore_pos_all | |||
del hislikelihood_candidates_all, mean_candidates_all, variance_candidates_all, likelihood_candidates_all, second_cand | |||
del negitems_mu, ratings_mu_candidates, user_set | |||
gc.collect() | |||
def change_candidate(self, epoch_count): | |||
score_1epoch_nxt = [] | |||
for c in range(5): | |||
# todo: implement proper funciton | |||
pred = self.MetaTL(self.MetaTL.rel_q_sharing.keys(), self.candidate_nxt[c]) | |||
score_1epoch_nxt.append(np.array(pred)) | |||
# score_1epoch_nxt.append(np.array(/ | |||
# [EvalUser.predict_fast(model, sess, num_user, num_item, parallel_users=100, | |||
# predict_data=candidate_nxt[c])])) | |||
# score_1epoch_pos = np.array( | |||
# [EvalUser.predict_pos(model, sess, num_user, max_posid, parallel_users=100, predict_data=train_pos)]) | |||
# todo: implement proper function | |||
score_1epoch_pos = self.MetaTL(user_train, train_data) | |||
# delete the score_cand_cur[0,:,:] at the earlist timestamp | |||
if epoch_count >= 5 or epoch_count == 0: | |||
self.score_pos_cur = np.delete(self.score_pos_cur, 0, 0) | |||
for c in range(5): | |||
self.score_cand_nxt[c] = np.concatenate([self.score_cand_nxt[c], score_1epoch_nxt[c]], axis=0) | |||
self.score_pos_cur = np.concatenate([self.score_pos_cur, score_1epoch_pos], axis=0) | |||
score_cand_cur = np.copy(self.score_cand_nxt[0]) | |||
candidate_cur = np.copy(self.candidate_nxt[0]) | |||
for c in range(4): | |||
self.candidate_nxt[c] = np.copy(self.candidate_nxt[c + 1]) | |||
self.score_cand_nxt[c] = np.copy(self.score_cand_nxt[c + 1]) | |||
self.candidate_nxt[4] = np.random.choice(list(range(1, self.itemnum)), [self.user_train_num, self.varset_size]) | |||
for i in range(self.user_train_num): | |||
for j in range(self.varset_size): | |||
while self.candidate_nxt[4][i, j] in self.user_train[i]: | |||
self.candidate_nxt[4][i, j] = random.randint(0, self.itemnum - 1) | |||
self.score_cand_nxt[4] = np.delete(self.score_cand_nxt[4], list(range(5)), 0) | |||
def rank_predict(self, data, x, ranks): | |||
# query_idx is the idx of positive score | |||
@@ -53,19 +245,50 @@ class Trainer: | |||
data['NDCG@1'] += 1 / np.log2(rank + 1) | |||
data['MRR'] += 1.0 / rank | |||
def do_one_step(self, task, iseval=False, curr_rel=''): | |||
def do_one_step(self, task, iseval=False, curr_rel='', epoch=None, train_task=None, epoch_count=None): | |||
loss, p_score, n_score = 0, 0, 0 | |||
if not iseval: | |||
task_new = copy.deepcopy(np.array(task[2])) | |||
cnt = 0 | |||
for user in curr_rel: | |||
if user in self.final_negative_items: | |||
for index, t in enumerate(task[1][cnt]): | |||
if index % 2 == 0: | |||
t[2] = self.final_negative_items[user][0] | |||
else: | |||
t[2] = self.final_negative_items[user][1] | |||
cnt += 1 | |||
self.optimizer.zero_grad() | |||
p_score, n_score = self.MetaTL(task, iseval, curr_rel) | |||
y = torch.Tensor([1]).to(self.device) | |||
loss = self.MetaTL.loss_func(p_score, n_score,self.device) | |||
loss = self.MetaTL.loss_func(p_score, n_score, y) | |||
loss.backward() | |||
self.optimizer.step() | |||
# task_new = np.array(task[2]) | |||
task_new = np.tile(task_new, reps=(1, self.varset_size, 1)) | |||
task_new[:, :, 2] = np.array(itemgetter(*curr_rel)(self.candidate_cur)) | |||
data = self.MetaTL.fast_forward(task_new, curr_rel) | |||
# prepare score_cand_cur (make all users to have the same number of history scores) | |||
temp = min(epoch_count, 4) | |||
for index, user in enumerate(curr_rel): | |||
if (not user in self.score_cand_cur): | |||
self.score_cand_cur[user] = np.array([data[index]]) | |||
elif len(self.score_cand_cur[user]) <= temp: | |||
self.score_cand_cur[user] = np.concatenate( | |||
[self.score_cand_cur[user], np.array([data[index]])], axis=0) | |||
self.change_mu(p_score, n_score, epoch_count, curr_rel, task) | |||
elif curr_rel != '': | |||
p_score, n_score = self.MetaTL(task, iseval, curr_rel) | |||
y = torch.Tensor([1]).to(self.device) | |||
loss = self.MetaTL.loss_func(p_score, n_score,self.device) | |||
loss = self.MetaTL.loss_func(p_score, n_score, y) | |||
return loss, p_score, n_score | |||
def train(self): | |||
@@ -73,12 +296,46 @@ class Trainer: | |||
best_epoch = 0 | |||
best_value = 0 | |||
bad_counts = 0 | |||
epoch_count = 0 | |||
# training by epoch | |||
for e in range(self.epoch): | |||
if e % 10 == 0: print("epoch:", e) | |||
# sample one batch from data_loader | |||
train_task, curr_rel = self.train_data_loader.next_batch() | |||
loss, _, _ = self.do_one_step(train_task, iseval=False, curr_rel=curr_rel) | |||
# change task negative samples using mu_idx | |||
loss, _, _ = self.do_one_step(train_task, iseval=False, curr_rel=curr_rel, epoch=e, train_task=train_task, | |||
epoch_count=epoch_count) | |||
# after ten epoch epoch | |||
if (e % 2500 == 0) and e != 0: | |||
# init the two candidate sets for monitoring variance | |||
self.candidate_cur = np.random.choice(self.itemnum, [self.user_train_num + 1, self.varset_size]) | |||
for i in range(1, self.user_train_num + 1): | |||
for j in range(self.varset_size): | |||
while self.candidate_cur[i, j] in self.user_train[i]: | |||
self.candidate_cur[i, j] = random.randint(1, self.itemnum) | |||
self.Mu_idx = {} | |||
for i in range(self.user_train_num + 1): | |||
Mu_idx_tmp = random.sample(list(range(self.varset_size)), self.S1) | |||
self.Mu_idx[i] = Mu_idx_tmp | |||
self.score_cand_cur = {} | |||
self.score_pos_cur = {} | |||
self.final_negative_items = {} | |||
# reset epoch_count has many effects on the chnage_mu and one_step and train function | |||
epoch_count = 0 | |||
# after one epoch | |||
elif e % 25 == 0 and e != 0: | |||
self.check_complenteness(epoch_count) | |||
print("epoch_count:", epoch_count) | |||
print("=========================\n\n") | |||
epoch_count += 1 | |||
# do evaluation on specific epoch | |||
if e % self.eval_epoch == 0 and e != 0: | |||
@@ -90,12 +347,18 @@ class Trainer: | |||
print('Epoch {} Testing...'.format(e)) | |||
test_data = self.eval(istest=True, epoch=e) | |||
# original = r'/content/results.txt' | |||
# target = r'/content/drive/MyDrive/MetaTL/MetaTL_v3/results.txt' | |||
# shutil.copyfile(original, target) | |||
# print(self.candidate_cur[curr_rel[0]],self.score_cand_cur[curr_rel[0]]) | |||
print('Finish') | |||
def eval(self, istest=False, epoch=None): | |||
# self.MetaTL.eval() | |||
torch.backends.cudnn.enabled = False | |||
self.MetaTL.eval() | |||
self.MetaTL.rel_q_sharing = dict() | |||
if istest: | |||
@@ -129,28 +392,60 @@ class Trainer: | |||
# print current temp data dynamically | |||
for k in data.keys(): | |||
temp[k] = data[k] / t | |||
# sys.stdout.write("{}\tMRR: {:.3f}\tNDCG@10: {:.3f}\tNDCG@5: {:.3f}\tNDCG@1: {:.3f}\tHits@10: {:.3f}\tHits@5: {:.3f}\tHits@1: {:.3f}\r".format( | |||
# t, temp['MRR'], temp['NDCG@10'], temp['NDCG@5'], temp['NDCG@1'], temp['Hits@10'], temp['Hits@5'], temp['Hits@1'])) | |||
# sys.stdout.flush() | |||
# print overall evaluation result and return it | |||
for k in data.keys(): | |||
data[k] = round(data[k] / t, 3) | |||
print("\n") | |||
if istest: | |||
print("TEST: \t test_loss: ",total_loss.detach().item()) | |||
print("TEST: \tMRR: {:.3f}\tNDCG@10: {:.3f}\tNDCG@5: {:.3f}\tNDCG@1: {:.3f}\tHits@10: {:.3f}\tHits@5: {:.3f}\tHits@1: {:.3f}\r".format( | |||
temp['MRR'], temp['NDCG@10'], temp['NDCG@5'], temp['NDCG@1'], temp['Hits@10'], temp['Hits@5'], temp['Hits@1']),"\n") | |||
print("TEST: \t test_loss: ", total_loss.detach().item()) | |||
print( | |||
"TEST: \tMRR: {:.3f}\tNDCG@10: {:.3f}\tNDCG@5: {:.3f}\tNDCG@1: {:.3f}\tHits@10: {:.3f}\tHits@5: {:.3f}\tHits@1: {:.3f}\r".format( | |||
temp['MRR'], temp['NDCG@10'], temp['NDCG@5'], temp['NDCG@1'], temp['Hits@10'], temp['Hits@5'], | |||
temp['Hits@1'])) | |||
with open('results.txt', 'a') as f: | |||
f.writelines("TEST: \tMRR: {:.3f}\tNDCG@10: {:.3f}\tNDCG@5: {:.3f}\tNDCG@1: {:.3f}\tHits@10: {:.3f}\tHits@5: {:.3f}\tHits@1: {:.3f}\r\n\n".format( | |||
temp['MRR'], temp['NDCG@10'], temp['NDCG@5'], temp['NDCG@1'], temp['Hits@10'], temp['Hits@5'], temp['Hits@1'])) | |||
f.writelines( | |||
"TEST: \tMRR: {:.3f}\tNDCG@10: {:.3f}\tNDCG@5: {:.3f}\tNDCG@1: {:.3f}\tHits@10: {:.3f}\tHits@5: {:.3f}\tHits@1: {:.3f}\r\n\n".format( | |||
temp['MRR'], temp['NDCG@10'], temp['NDCG@5'], temp['NDCG@1'], temp['Hits@10'], temp['Hits@5'], | |||
temp['Hits@1'])) | |||
else: | |||
print("VALID: \t validation_loss: ", total_loss.detach().item() ) | |||
print("VALID: \tMRR: {:.3f}\tNDCG@10: {:.3f}\tNDCG@5: {:.3f}\tNDCG@1: {:.3f}\tHits@10: {:.3f}\tHits@5: {:.3f}\tHits@1: {:.3f}\r".format( | |||
temp['MRR'], temp['NDCG@10'], temp['NDCG@5'], temp['NDCG@1'], temp['Hits@10'], temp['Hits@5'], temp['Hits@1'])) | |||
with open("results.txt",'a') as f: | |||
f.writelines("VALID: \tMRR: {:.3f}\tNDCG@10: {:.3f}\tNDCG@5: {:.3f}\tNDCG@1: {:.3f}\tHits@10: {:.3f}\tHits@5: {:.3f}\tHits@1: {:.3f}\r".format( | |||
temp['MRR'], temp['NDCG@10'], temp['NDCG@5'], temp['NDCG@1'], temp['Hits@10'], temp['Hits@5'], temp['Hits@1'])) | |||
return data | |||
print("VALID: \t validation_loss: ", total_loss.detach().item()) | |||
print( | |||
"VALID: \tMRR: {:.3f}\tNDCG@10: {:.3f}\tNDCG@5: {:.3f}\tNDCG@1: {:.3f}\tHits@10: {:.3f}\tHits@5: {:.3f}\tHits@1: {:.3f}\r".format( | |||
temp['MRR'], temp['NDCG@10'], temp['NDCG@5'], temp['NDCG@1'], temp['Hits@10'], temp['Hits@5'], | |||
temp['Hits@1'])) | |||
with open("results.txt", 'a') as f: | |||
f.writelines( | |||
"VALID: \tMRR: {:.3f}\tNDCG@10: {:.3f}\tNDCG@5: {:.3f}\tNDCG@1: {:.3f}\tHits@10: {:.3f}\tHits@5: {:.3f}\tHits@1: {:.3f}\r".format( | |||
temp['MRR'], temp['NDCG@10'], temp['NDCG@5'], temp['NDCG@1'], temp['Hits@10'], temp['Hits@5'], | |||
temp['Hits@1'])) | |||
print("\n") | |||
del total_loss, p_score, n_score | |||
gc.collect() | |||
self.MetaTL.train() | |||
torch.backends.cudnn.enabled = True | |||
return data | |||
def check_complenteness(self, epoch_count): | |||
# un_users = set() | |||
for user in list(self.user_train.keys()): | |||
if not user in self.score_cand_cur: | |||
self.score_cand_cur[user] = np.array([np.zeros(self.varset_size)]) | |||
num = epoch_count - len(self.score_cand_cur[user]) + 1 | |||
if num > 0 and len(self.score_cand_cur[user]) < 5: | |||
# if num!=1 : print("bug happend1") | |||
# un_users.add(user) | |||
self.score_cand_cur[user] = np.concatenate( | |||
[self.score_cand_cur[user], np.array([self.score_cand_cur[user][-1]])], axis=0) | |||
if epoch_count >= 4: | |||
t = 0 | |||
for user in list(self.score_cand_cur.keys()): | |||
t = user | |||
# self.score_cand_cur[user] = np.delete(self.score_cand_cur[user], 0, 0) | |||
self.score_cand_cur[user] = self.score_cand_cur[user][-4:] |
@@ -7,19 +7,19 @@ from collections import defaultdict, Counter | |||
from multiprocessing import Process, Queue | |||
# sampler for batch generation | |||
def random_neq(l, r, s,user_train): | |||
# t = np.random.randint(l, r) | |||
# while t in s: | |||
# t = np.random.randint(l, r) | |||
# return t | |||
def random_neq(l, r, s): | |||
t = np.random.randint(l, r) | |||
while t in s: | |||
t = np.random.randint(l, r) | |||
return t | |||
user = random.choice(list(user_train.keys())) | |||
item = random.choice(user_train[user]) | |||
while item in s: | |||
user = random.choice(list(user_train.keys())) | |||
item = random.choice(user_train[user]) | |||
return item | |||
# user = random.choice(list(user_train.keys())) | |||
# item = random.choice(user_train[user]) | |||
# | |||
# while item in s: | |||
# user = random.choice(list(user_train.keys())) | |||
# item = random.choice(user_train[user]) | |||
# return item | |||
def trans_to_cuda(variable): | |||
@@ -107,10 +107,10 @@ class DataLoader(object): | |||
self.itemnum = itemnum | |||
if parameter['number_of_neg']: | |||
self.number_of_neg = parameter['number_of_neg'] | |||
else: | |||
self.number_of_neg = 5 | |||
# if parameter['number_of_neg']: | |||
# self.number_of_neg = parameter['number_of_neg'] | |||
# else: | |||
# self.number_of_neg = 5 | |||
def next_one_on_eval(self): | |||
@@ -123,8 +123,9 @@ class DataLoader(object): | |||
seq = np.zeros([self.maxlen], dtype=np.int32) | |||
pos = np.zeros([self.maxlen - 1], dtype=np.int32) | |||
neg = np.zeros([self.maxlen * self.number_of_neg], dtype=np.int32) | |||
# neg = np.zeros([self.maxlen * self.number_of_neg], dtype=np.int32) | |||
neg = np.zeros([self.maxlen - 1], dtype=np.int32) | |||
idx = self.maxlen - 1 | |||
ts = set(self.train[u]) | |||
@@ -132,28 +133,28 @@ class DataLoader(object): | |||
seq[idx] = i | |||
if idx > 0: | |||
pos[idx - 1] = i | |||
# if i != 0: neg[idx - 1] = random_neq(1, self.itemnum + 1, ts,self.train) | |||
if i != 0: neg[idx - 1] = random_neq(1, self.itemnum + 1, ts) | |||
idx -= 1 | |||
if idx == -1: break | |||
for i in range(len(neg)): | |||
neg[i] = random_neq(1, self.itemnum + 1, ts,self.train) | |||
# for i in range(len(neg)): | |||
# neg[i] = random_neq(1, self.itemnum + 1, ts,self.train) | |||
curr_rel = u | |||
support_triples, support_negative_triples, query_triples, negative_triples = [], [], [], [] | |||
for idx in range(self.maxlen-1): | |||
support_triples.append([seq[idx],curr_rel,pos[idx]]) | |||
# support_negative_triples.append([seq[idx],curr_rel,neg[idx]]) | |||
support_negative_triples.append([seq[idx],curr_rel,neg[idx]]) | |||
# support_negative_triples.append([seq[-1],curr_rel,neg[idx]]) | |||
# for idx in range(len(neg)): | |||
# support_negative_triples.append([seq[-1],curr_rel,neg[idx]]) | |||
# print("injam",self.maxlen,list(range(self.maxlen-1))) | |||
# print("====") | |||
for j in range(self.number_of_neg): | |||
for idx in range(self.maxlen-1): | |||
# print(j * self.maxlen + idx) | |||
support_negative_triples.append([seq[idx], curr_rel, neg[j * (self.maxlen-1) + idx]]) | |||
# for j in range(self.number_of_neg): | |||
# for idx in range(self.maxlen-1): | |||
# # print(j * self.maxlen + idx) | |||
# support_negative_triples.append([seq[idx], curr_rel, neg[j * (self.maxlen-1) + idx]]) | |||
# print("=end=\n\n") | |||
rated = ts |