from utils import * | from utils import * | ||||
from sampler import * | from sampler import * | ||||
import json | import json | ||||
import torch | |||||
import argparse | import argparse | ||||
def get_params(): | def get_params(): | ||||
args = argparse.ArgumentParser() | args = argparse.ArgumentParser() | ||||
args.add_argument("-data", "--dataset", default="electronics", type=str) | args.add_argument("-data", "--dataset", default="electronics", type=str) | ||||
args.add_argument("-seed", "--seed", default=None, type=int) | |||||
args.add_argument("-seed", "--seed", default=7, type=int) | |||||
args.add_argument("-K", "--K", default=3, type=int) #NUMBER OF SHOT | args.add_argument("-K", "--K", default=3, type=int) #NUMBER OF SHOT | ||||
args.add_argument("-dim", "--embed_dim", default=100, type=int) | |||||
args.add_argument("-dim", "--embed_dim", default=128, type=int) | |||||
args.add_argument("-bs", "--batch_size", default=1024, type=int) | args.add_argument("-bs", "--batch_size", default=1024, type=int) | ||||
args.add_argument("-lr", "--learning_rate", default=0.001, type=float) | args.add_argument("-lr", "--learning_rate", default=0.001, type=float) | ||||
args.add_argument("-epo", "--epoch", default=100000, type=int) | args.add_argument("-epo", "--epoch", default=100000, type=int) | ||||
args.add_argument("-prt_epo", "--print_epoch", default=100, type=int) | args.add_argument("-prt_epo", "--print_epoch", default=100, type=int) | ||||
args.add_argument("-eval_epo", "--eval_epoch", default=1000, type=int) | |||||
args.add_argument("-eval_epo", "--eval_epoch", default=500, type=int) | |||||
args.add_argument("-b", "--beta", default=5, type=float) | args.add_argument("-b", "--beta", default=5, type=float) | ||||
args.add_argument("-m", "--margin", default=1, type=float) | args.add_argument("-m", "--margin", default=1, type=float) | ||||
args.add_argument("-p", "--dropout_p", default=0.5, type=float) | args.add_argument("-p", "--dropout_p", default=0.5, type=float) | ||||
args.add_argument("-gpu", "--device", default=0, type=int) | args.add_argument("-gpu", "--device", default=0, type=int) | ||||
args.add_argument("--number_of_neg",default=5,type=int) | |||||
args.add_argument("--number_of_neg",default=1,type=int) | |||||
params[k] = v | params[k] = v | ||||
# params['device'] = torch.device('cuda:'+str(args.device)) | |||||
params['device'] = args.device | |||||
params['device'] = torch.device('cuda:'+str(args.device)) | |||||
# params['device'] = args.device | |||||
# params['device'] = torch.device('cpu') | # params['device'] = torch.device('cpu') | ||||
return params, args | return params, args | ||||
if __name__ == '__main__': | if __name__ == '__main__': | ||||
print(torch.__version__) | |||||
print(torch.cuda.is_available()) | print(torch.cuda.is_available()) | ||||
params, args = get_params() | params, args = get_params() | ||||
params['varset_size'] = 1000 | |||||
params['alpha'] = 0.5 | |||||
params['S1'] = 40 | |||||
params['S2_div_S1'] = 1 | |||||
params['temperature'] = 1.0 | |||||
params['warmup'] = 20.0 | |||||
if params['seed'] is not None: | if params['seed'] is not None: | ||||
SEED = params['seed'] | SEED = params['seed'] | ||||
torch.manual_seed(SEED) | torch.manual_seed(SEED) | ||||
print("===============", torch.cuda.device_count(), "=======") | print("===============", torch.cuda.device_count(), "=======") | ||||
user_train, usernum_train, itemnum, user_input_test, user_test, user_input_valid, user_valid = data_load(args.dataset, args.K) | user_train, usernum_train, itemnum, user_input_test, user_test, user_input_valid, user_valid = data_load(args.dataset, args.K) | ||||
sampler = WarpSampler(user_train, usernum_train, itemnum, batch_size=args.batch_size, maxlen=args.K, n_workers=3,params=params) | |||||
sampler = WarpSampler(user_train, usernum_train, itemnum, batch_size=args.batch_size, maxlen=args.K, n_workers=3) | |||||
sampler_test = DataLoader(user_input_test, user_test, itemnum, params) | sampler_test = DataLoader(user_input_test, user_test, itemnum, params) | ||||
sampler_valid = DataLoader(user_input_valid, user_valid, itemnum, params) | sampler_valid = DataLoader(user_input_valid, user_valid, itemnum, params) | ||||
print("===============", torch.cuda.device_count(), "=======") | print("===============", torch.cuda.device_count(), "=======") | ||||
trainer = Trainer([sampler, sampler_valid, sampler_test], itemnum, params) | |||||
trainer = Trainer([sampler, sampler_valid, sampler_test], itemnum, params,usernum_train,user_train) | |||||
print("===============", torch.cuda.device_count(), "=======") | print("===============", torch.cuda.device_count(), "=======") | ||||
trainer.train() | trainer.train() | ||||
import torch | import torch | ||||
import torch.nn as nn | import torch.nn as nn | ||||
from torch.nn import functional as F | from torch.nn import functional as F | ||||
from numpy import linalg as LA | |||||
import numpy as np | |||||
class Embedding(nn.Module): | class Embedding(nn.Module): | ||||
def __init__(self, num_ent, parameter): | def __init__(self, num_ent, parameter): | ||||
# self.device = torch.device('cuda:0') | # self.device = torch.device('cuda:0') | ||||
self.device = torch.device(parameter['device']) | self.device = torch.device(parameter['device']) | ||||
self.es = parameter['embed_dim'] | self.es = parameter['embed_dim'] | ||||
self.embedding = nn.Embedding(num_ent + 1, self.es) | self.embedding = nn.Embedding(num_ent + 1, self.es) | ||||
nn.init.xavier_uniform_(self.embedding.weight) | nn.init.xavier_uniform_(self.embedding.weight) | ||||
idx = torch.LongTensor(idx).to(self.device) | idx = torch.LongTensor(idx).to(self.device) | ||||
return self.embedding(idx) | return self.embedding(idx) | ||||
class MetaLearner(nn.Module): | class MetaLearner(nn.Module): | ||||
def __init__(self, K, embed_size=100, num_hidden1=500, num_hidden2=200, out_size=100, dropout_p=0.5): | def __init__(self, K, embed_size=100, num_hidden1=500, num_hidden2=200, out_size=100, dropout_p=0.5): | ||||
super(MetaLearner, self).__init__() | super(MetaLearner, self).__init__() | ||||
self.out_size = embed_size | self.out_size = embed_size | ||||
self.hidden_size = embed_size | self.hidden_size = embed_size | ||||
# self.rnn = nn.LSTM(embed_size,self.hidden_size,2,dropout=0.2) | # self.rnn = nn.LSTM(embed_size,self.hidden_size,2,dropout=0.2) | ||||
self.rnn = nn.GRU(input_size=embed_size,hidden_size=self.hidden_size, num_layers=1) | |||||
self.rnn = nn.GRU(input_size=embed_size, hidden_size=self.embed_size * 2, num_layers=1) | |||||
self.activation = nn.LeakyReLU() | |||||
self.linear = nn.Linear(self.embed_size * 2, self.embed_size) | |||||
self.norm = nn.BatchNorm1d(num_features=self.out_size) | |||||
# nn.init.xavier_normal_(self.rnn.all_weights) | |||||
# nn.init.xavier_normal_(self.linear.weight) | |||||
def forward(self, inputs): | |||||
def forward(self, inputs, evaluation=False): | |||||
size = inputs.shape | size = inputs.shape | ||||
x = torch.stack([inputs[:,0,0,:],inputs[:,0,1,:],inputs[:,1,1,:]],dim=1) | |||||
x = x.transpose(0,1) | |||||
x = torch.stack([inputs[:, 0, 0, :], inputs[:, 0, 1, :], inputs[:, 1, 1, :]], dim=1) | |||||
x = x.transpose(0, 1) | |||||
# _,(x,c) = self.rnn(x) | # _,(x,c) = self.rnn(x) | ||||
x,c = self.rnn(x) | |||||
x, c = self.rnn(x) | |||||
x = x[-1] | x = x[-1] | ||||
x = x.squeeze(0) | |||||
if not evaluation: | |||||
x = x.squeeze(0) | |||||
x = self.activation(x) | |||||
x = self.linear(x) | |||||
x = self.norm(x) | |||||
return x.view(size[0], 1, 1, self.out_size) | return x.view(size[0], 1, 1, self.out_size) | ||||
class EmbeddingLearner(nn.Module): | class EmbeddingLearner(nn.Module): | ||||
def __init__(self): | def __init__(self): | ||||
super(EmbeddingLearner, self).__init__() | super(EmbeddingLearner, self).__init__() | ||||
n_score = score[:, pos_num:] | n_score = score[:, pos_num:] | ||||
return p_score, n_score | return p_score, n_score | ||||
def bpr_loss(p_scores, n_values,device): | |||||
def bpr_loss(p_scores, n_values, device): | |||||
ratio = int(n_values.shape[1] / p_scores.shape[1]) | ratio = int(n_values.shape[1] / p_scores.shape[1]) | ||||
temp_pvalues = torch.tensor([],device=device) | |||||
temp_pvalues = torch.tensor([], device=device) | |||||
for i in range(p_scores.shape[1]): | for i in range(p_scores.shape[1]): | ||||
temp_pvalues = torch.cat((temp_pvalues, p_scores[:, i, None].expand(-1, ratio)), dim=1) | temp_pvalues = torch.cat((temp_pvalues, p_scores[:, i, None].expand(-1, ratio)), dim=1) | ||||
d = torch.sub(temp_pvalues,n_values) | |||||
d = torch.sub(temp_pvalues, n_values) | |||||
t = F.logsigmoid(d) | t = F.logsigmoid(d) | ||||
loss = -1 * (1.0/n_values.shape[1]) * t.sum(dim=1) | |||||
loss = -1 * (1.0 / n_values.shape[1]) * t.sum(dim=1) | |||||
loss = loss.sum(dim=0) | loss = loss.sum(dim=0) | ||||
return loss | return loss | ||||
def bpr_max_loss(p_scores, n_values,device): | |||||
s = F.softmax(n_values,dim=1) | |||||
def bpr_max_loss(p_scores, n_values, device): | |||||
s = F.softmax(n_values, dim=1) | |||||
ratio = int(n_values.shape[1] / p_scores.shape[1]) | ratio = int(n_values.shape[1] / p_scores.shape[1]) | ||||
temp_pvalues = torch.tensor([],device=device) | |||||
temp_pvalues = torch.tensor([], device=device) | |||||
for i in range(p_scores.shape[1]): | for i in range(p_scores.shape[1]): | ||||
temp_pvalues = torch.cat((temp_pvalues,p_scores[:,i,None].expand(-1,ratio)),dim=1) | |||||
temp_pvalues = torch.cat((temp_pvalues, p_scores[:, i, None].expand(-1, ratio)), dim=1) | |||||
d = torch.sigmoid(torch.sub(temp_pvalues,n_values)) | |||||
t = torch.mul(s,d) | |||||
d = torch.sigmoid(torch.sub(temp_pvalues, n_values)) | |||||
t = torch.mul(s, d) | |||||
loss = -1 * torch.log(t.sum(dim=1)) | loss = -1 * torch.log(t.sum(dim=1)) | ||||
loss = loss.sum() | loss = loss.sum() | ||||
return loss | return loss | ||||
def bpr_max_loss_regularized(p_scores, n_values,device,l=0.0001): | |||||
s = F.softmax(n_values,dim=1) | |||||
def bpr_max_loss_regularized(p_scores, n_values, device, l=0.0001): | |||||
s = F.softmax(n_values, dim=1) | |||||
ratio = int(n_values.shape[1] / p_scores.shape[1]) | ratio = int(n_values.shape[1] / p_scores.shape[1]) | ||||
temp_pvalues = torch.tensor([],device=device) | |||||
temp_pvalues = torch.tensor([], device=device) | |||||
for i in range(p_scores.shape[1]): | for i in range(p_scores.shape[1]): | ||||
temp_pvalues = torch.cat((temp_pvalues,p_scores[:,i,None].expand(-1,ratio)),dim=1) | |||||
temp_pvalues = torch.cat((temp_pvalues, p_scores[:, i, None].expand(-1, ratio)), dim=1) | |||||
d = torch.sigmoid(torch.sub(temp_pvalues,n_values)) | |||||
t = torch.mul(s,d) | |||||
d = torch.sigmoid(torch.sub(temp_pvalues, n_values)) | |||||
t = torch.mul(s, d) | |||||
loss = -1 * torch.log(t.sum(dim=1)) | loss = -1 * torch.log(t.sum(dim=1)) | ||||
loss = loss.sum() | loss = loss.sum() | ||||
loss2 = torch.mul(s,n_values**2) | |||||
loss2 = torch.mul(s, n_values ** 2) | |||||
loss2 = loss2.sum(dim=1) | loss2 = loss2.sum(dim=1) | ||||
loss2 = loss2.sum() | loss2 = loss2.sum() | ||||
return loss + l*loss2 | |||||
return loss + l * loss2 | |||||
def top_loss(p_scores, n_values,device): | |||||
def top_loss(p_scores, n_values, device): | |||||
ratio = int(n_values.shape[1] / p_scores.shape[1]) | ratio = int(n_values.shape[1] / p_scores.shape[1]) | ||||
temp_pvalues = torch.tensor([],device=device) | |||||
temp_pvalues = torch.tensor([], device=device) | |||||
for i in range(p_scores.shape[1]): | for i in range(p_scores.shape[1]): | ||||
temp_pvalues = torch.cat((temp_pvalues, p_scores[:, i, None].expand(-1, ratio)), dim=1) | temp_pvalues = torch.cat((temp_pvalues, p_scores[:, i, None].expand(-1, ratio)), dim=1) | ||||
t1 = torch.sigmoid(torch.sub(n_values , temp_pvalues)) | |||||
t2 = torch.sigmoid(torch.pow(n_values,2)) | |||||
t = torch.add(t1,t2) | |||||
t1 = torch.sigmoid(torch.sub(n_values, temp_pvalues)) | |||||
t2 = torch.sigmoid(torch.pow(n_values, 2)) | |||||
t = torch.add(t1, t2) | |||||
t = t.sum(dim=1) | t = t.sum(dim=1) | ||||
loss = t / n_values.shape[1] | loss = t / n_values.shape[1] | ||||
loss = loss.sum(dim=0) | loss = loss.sum(dim=0) | ||||
self.embedding = Embedding(itemnum, parameter) | self.embedding = Embedding(itemnum, parameter) | ||||
self.relation_learner = MetaLearner(parameter['K'] - 1, embed_size=self.embed_dim, num_hidden1=500, | self.relation_learner = MetaLearner(parameter['K'] - 1, embed_size=self.embed_dim, num_hidden1=500, | ||||
num_hidden2=200, out_size=100, dropout_p=0) | |||||
num_hidden2=200, out_size=100, dropout_p=0) | |||||
self.embedding_learner = EmbeddingLearner() | self.embedding_learner = EmbeddingLearner() | ||||
# self.loss_func = nn.MarginRankingLoss(self.margin) | |||||
self.loss_func = nn.MarginRankingLoss(self.margin) | |||||
# self.loss_func = bpr_max_loss | # self.loss_func = bpr_max_loss | ||||
self.loss_func = bpr_loss | |||||
# self.loss_func = bpr_loss | |||||
self.rel_q_sharing = dict() | self.rel_q_sharing = dict() | ||||
negative[:, :, 1, :]], 1).unsqueeze(2) | negative[:, :, 1, :]], 1).unsqueeze(2) | ||||
return pos_neg_e1, pos_neg_e2 | return pos_neg_e1, pos_neg_e2 | ||||
def fast_forward(self, tasks, curr_rel=''): | |||||
with torch.no_grad(): | |||||
sup = self.embedding(tasks) | |||||
K = sup.shape[1] | |||||
rel_q = self.rel_q_sharing[curr_rel] | |||||
sup_neg_e1, sup_neg_e2 = sup[:, :, 0, :], sup[:, :, 1, :] | |||||
a = sup_neg_e1.cpu().detach().numpy() | |||||
b = rel_q.squeeze(1).cpu().detach().numpy() | |||||
b = np.tile(b, (1, a.shape[-2], 1)) | |||||
c = sup_neg_e2.cpu().detach().numpy() | |||||
# print(a.shape,b.shape,c.shape) | |||||
scores = -LA.norm(a + b - c, 2, -1) | |||||
return scores | |||||
def forward(self, task, iseval=False, curr_rel=''): | def forward(self, task, iseval=False, curr_rel=''): | ||||
# transfer task string into embedding | # transfer task string into embedding | ||||
support, support_negative, query, negative = [self.embedding(t) for t in task] | support, support_negative, query, negative = [self.embedding(t) for t in task] | ||||
K = support.shape[1] # num of K | |||||
K = support.shape[1] # num of K | |||||
num_sn = support_negative.shape[1] # num of support negative | num_sn = support_negative.shape[1] # num of support negative | ||||
num_q = query.shape[1] # num of query | |||||
num_n = negative.shape[1] # num of query negative | |||||
num_q = query.shape[1] # num of query | |||||
num_n = negative.shape[1] # num of query negative | |||||
rel = self.relation_learner(support) | |||||
rel = self.relation_learner(support, iseval) | |||||
rel.retain_grad() | rel.retain_grad() | ||||
rel_s = rel.expand(-1, K+num_sn, -1, -1) | |||||
rel_s = rel.expand(-1, K + num_sn, -1, -1) | |||||
if iseval and curr_rel != '' and curr_rel in self.rel_q_sharing.keys(): | if iseval and curr_rel != '' and curr_rel in self.rel_q_sharing.keys(): | ||||
rel_q = self.rel_q_sharing[curr_rel] | rel_q = self.rel_q_sharing[curr_rel] | ||||
p_score, n_score = self.embedding_learner(sup_neg_e1, sup_neg_e2, rel_s, K) | p_score, n_score = self.embedding_learner(sup_neg_e1, sup_neg_e2, rel_s, K) | ||||
# y = torch.Tensor([1]).to(self.device) | |||||
y = torch.Tensor([1]).to(self.device) | |||||
self.zero_grad() | self.zero_grad() | ||||
# sorted,indecies = torch.sort(n_score, descending=True,dim=1) | # sorted,indecies = torch.sort(n_score, descending=True,dim=1) | ||||
# n_values = sorted[:,0:p_score.shape[1]] | # n_values = sorted[:,0:p_score.shape[1]] | ||||
# loss = self.loss_func(p_score, n_values, y) | |||||
loss = self.loss_func(p_score,n_score,device=self.device) | |||||
loss = self.loss_func(p_score, n_score, y) | |||||
# loss = self.loss_func(p_score,n_score,device=self.device) | |||||
loss.backward(retain_graph=True) | loss.backward(retain_graph=True) | ||||
grad_meta = rel.grad | grad_meta = rel.grad | ||||
rel_q = rel - self.beta*grad_meta | |||||
rel_q = rel - self.beta * grad_meta | |||||
self.rel_q_sharing[curr_rel] = rel_q | self.rel_q_sharing[curr_rel] = rel_q | ||||
rel_q = rel_q.expand(-1, num_q + num_n, -1, -1) | rel_q = rel_q.expand(-1, num_q + num_n, -1, -1) | ||||
que_neg_e1, que_neg_e2 = self.split_concat(query, negative) | |||||
que_neg_e1, que_neg_e2 = self.split_concat(query, negative) | |||||
p_score, n_score = self.embedding_learner(que_neg_e1, que_neg_e2, rel_q, num_q) | p_score, n_score = self.embedding_learner(que_neg_e1, que_neg_e2, rel_q, num_q) | ||||
return p_score, n_score | return p_score, n_score |
import sys | import sys | ||||
import copy | import copy | ||||
import torch | |||||
import random | import random | ||||
import numpy as np | import numpy as np | ||||
from collections import defaultdict, Counter | from collections import defaultdict, Counter | ||||
from multiprocessing import Process, Queue | from multiprocessing import Process, Queue | ||||
def random_neq(l, r, s, user_train,usernum): | |||||
# t = np.random.randint(l, r) | |||||
# while t in s: | |||||
# t = np.random.randint(l, r) | |||||
# return t | |||||
# user = np.random.choice(1, usernum + 1) | |||||
def random_neq(l, r, s): | |||||
t = np.random.randint(l, r) | |||||
while t in s: | |||||
t = np.random.randint(l, r) | |||||
return t | |||||
# user = random.randint(1,usernum+1) | |||||
# while len(user_train[user])<3: | |||||
# user = random.randint(1, usernum + 1) | |||||
# candid_item = user_train[user][random.randint(0, len(user_train[user])-1)] | |||||
# | |||||
# while candid_item in s: | |||||
# while len(user_train[user]) < 3: | |||||
# user = random.randint(1, usernum + 1) | |||||
# candid_item = user_train[user][random.randint(0, len(user_train[user])-1)] | |||||
# return candid_item | |||||
user = random.choice(list(user_train.keys())) | |||||
item = random.choice(user_train[user]) | |||||
def sample_function_mixed(user_train, usernum, itemnum, batch_size, maxlen, result_queue, SEED): | |||||
def sample(): | |||||
while item in s: | |||||
user = random.choice(list(user_train.keys())) | |||||
item = random.choice(user_train[user]) | |||||
return item | |||||
def random_negetive_batch(l, r, s, user_train,usernum, batch_users): | |||||
user = np.random.choice(batch_users) | |||||
candid_item = user_train[user][np.random.randint(0, len(user_train[user]))] | |||||
while candid_item in s: | |||||
user = np.random.choice(batch_users) | |||||
candid_item = user_train[user][np.random.randint(0, len(user_train[user]))] | |||||
return candid_item | |||||
def sample_function_mixed(user_train, usernum, itemnum, batch_size, maxlen, result_queue, SEED,number_of_neg): | |||||
def sample(user,batch_users): | |||||
if random.random()<=0.5: | |||||
# user = np.random.randint(1, usernum + 1) | |||||
# while len(user_train[user]) <= 1: user = np.random.randint(1, usernum + 1) | |||||
if random.random() < 0.5: | |||||
user = np.random.randint(1, usernum + 1) | |||||
while len(user_train[user]) <= 1: user = np.random.randint(1, usernum + 1) | |||||
seq = np.zeros([maxlen], dtype=np.int32) | seq = np.zeros([maxlen], dtype=np.int32) | ||||
pos = np.zeros([maxlen], dtype=np.int32) | pos = np.zeros([maxlen], dtype=np.int32) | ||||
neg = np.zeros([(maxlen-1)*number_of_neg + 1], dtype=np.int32) | |||||
neg = np.zeros([maxlen], dtype=np.int32) | |||||
if len(user_train[user]) < maxlen: | if len(user_train[user]) < maxlen: | ||||
nxt_idx = len(user_train[user]) - 1 | nxt_idx = len(user_train[user]) - 1 | ||||
else: | else: | ||||
nxt_idx = np.random.randint(maxlen,len(user_train[user])) | |||||
nxt_idx = np.random.randint(maxlen, len(user_train[user])) | |||||
nxt = user_train[user][nxt_idx] | nxt = user_train[user][nxt_idx] | ||||
idx = maxlen - 1 | idx = maxlen - 1 | ||||
ts = set(user_train[user]) | ts = set(user_train[user]) | ||||
for i in reversed(user_train[user][(nxt_idx - maxlen) : nxt_idx ]): | |||||
for i in reversed(user_train[user][min(0, nxt_idx - 1 - maxlen): nxt_idx - 1]): | |||||
seq[idx] = i | seq[idx] = i | ||||
pos[idx] = nxt | pos[idx] = nxt | ||||
# if nxt != 0: neg[idx] = random_neq(1, itemnum + 1, ts, user_train,usernum) | |||||
if nxt != 0: neg[idx] = random_neq(1, itemnum + 1, ts) | |||||
nxt = i | nxt = i | ||||
idx -= 1 | idx -= 1 | ||||
if idx == -1: break | if idx == -1: break | ||||
for i in range(len(neg)): | |||||
# neg[i] = random_neq(1, itemnum + 1, ts, user_train,usernum) | |||||
neg[i] = random_negetive_batch(1, itemnum + 1, ts, user_train, usernum, batch_users = batch_users) | |||||
curr_rel = user | curr_rel = user | ||||
support_triples, support_negative_triples, query_triples, negative_triples = [], [], [], [] | support_triples, support_negative_triples, query_triples, negative_triples = [], [], [], [] | ||||
for idx in range(maxlen-1): | |||||
support_triples.append([seq[idx],curr_rel,pos[idx]]) | |||||
# support_negative_triples.append([seq[idx],curr_rel,neg[idx]]) | |||||
# support_negative_triples.append([seq[-1], curr_rel, neg[idx]]) | |||||
# for idx in range(maxlen*30 - 1): | |||||
# support_negative_triples.append([seq[-1], curr_rel, neg[idx]]) | |||||
for j in range(number_of_neg): | |||||
for idx in range(maxlen-1): | |||||
support_negative_triples.append([seq[idx], curr_rel, neg[j*(maxlen-1) + idx]]) | |||||
query_triples.append([seq[-1],curr_rel,pos[-1]]) | |||||
negative_triples.append([seq[-1],curr_rel,neg[-1]]) | |||||
for idx in range(maxlen - 1): | |||||
support_triples.append([seq[idx], curr_rel, pos[idx]]) | |||||
support_negative_triples.append([seq[idx], curr_rel, neg[idx]]) | |||||
query_triples.append([seq[-1], curr_rel, pos[-1]]) | |||||
negative_triples.append([seq[-1], curr_rel, neg[-1]]) | |||||
return support_triples, support_negative_triples, query_triples, negative_triples, curr_rel | return support_triples, support_negative_triples, query_triples, negative_triples, curr_rel | ||||
else: | else: | ||||
# print("bug happened in sample_function_mixed") | |||||
# user = np.random.randint(1, usernum + 1) | |||||
# while len(user_train[user]) <= 1: user = np.random.randint(1, usernum + 1) | |||||
user = np.random.randint(1, usernum + 1) | |||||
while len(user_train[user]) <= 1: user = np.random.randint(1, usernum + 1) | |||||
seq = np.zeros([maxlen], dtype=np.int32) | seq = np.zeros([maxlen], dtype=np.int32) | ||||
pos = np.zeros([maxlen], dtype=np.int32) | pos = np.zeros([maxlen], dtype=np.int32) | ||||
neg = np.zeros([maxlen*number_of_neg], dtype=np.int32) | |||||
neg = np.zeros([maxlen], dtype=np.int32) | |||||
list_idx = random.sample([i for i in range(len(user_train[user]))], maxlen + 1) | list_idx = random.sample([i for i in range(len(user_train[user]))], maxlen + 1) | ||||
list_item = [user_train[user][i] for i in sorted(list_idx)] | list_item = [user_train[user][i] for i in sorted(list_idx)] | ||||
for i in reversed(list_item[:-1]): | for i in reversed(list_item[:-1]): | ||||
seq[idx] = i | seq[idx] = i | ||||
pos[idx] = nxt | pos[idx] = nxt | ||||
# if nxt != 0: neg[idx] = random_neq(1, itemnum + 1, ts) | |||||
if nxt != 0: neg[idx] = random_neq(1, itemnum + 1, ts) | |||||
nxt = i | nxt = i | ||||
idx -= 1 | idx -= 1 | ||||
if idx == -1: break | if idx == -1: break | ||||
curr_rel = user | curr_rel = user | ||||
support_triples, support_negative_triples, query_triples, negative_triples = [], [], [], [] | support_triples, support_negative_triples, query_triples, negative_triples = [], [], [], [] | ||||
for i in range(len(neg)): | |||||
# neg[i] = random_neq(1, itemnum + 1, ts, user_train,usernum) | |||||
neg[i] = random_negetive_batch(1, itemnum + 1, ts, user_train, usernum, batch_users = batch_users) | |||||
for j in range(number_of_neg): | |||||
for idx in range(maxlen-1): | |||||
support_negative_triples.append([seq[idx], curr_rel, neg[j*maxlen + idx]]) | |||||
for idx in range(maxlen-1): | |||||
support_triples.append([seq[idx],curr_rel,pos[idx]]) | |||||
# support_negative_triples.append([seq[idx],curr_rel,neg[idx]]) | |||||
query_triples.append([seq[-1],curr_rel,pos[-1]]) | |||||
negative_triples.append([seq[-1],curr_rel,neg[-1]]) | |||||
for idx in range(maxlen - 1): | |||||
support_triples.append([seq[idx], curr_rel, pos[idx]]) | |||||
support_negative_triples.append([seq[idx], curr_rel, neg[idx]]) | |||||
query_triples.append([seq[-1], curr_rel, pos[-1]]) | |||||
negative_triples.append([seq[-1], curr_rel, neg[-1]]) | |||||
return support_triples, support_negative_triples, query_triples, negative_triples, curr_rel | return support_triples, support_negative_triples, query_triples, negative_triples, curr_rel | ||||
np.random.seed(SEED) | np.random.seed(SEED) | ||||
while True: | while True: | ||||
one_batch = [] | one_batch = [] | ||||
users = [] | |||||
for i in range(batch_size): | |||||
user = np.random.randint(1, usernum + 1) | |||||
while len(user_train[user]) <= 1: user = np.random.randint(1, usernum + 1) | |||||
users.append(user) | |||||
for i in range(batch_size): | for i in range(batch_size): | ||||
one_batch.append(sample(user = users[i], batch_users = users)) | |||||
one_batch.append(sample()) | |||||
support, support_negative, query, negative, curr_rel = zip(*one_batch) | support, support_negative, query, negative, curr_rel = zip(*one_batch) | ||||
result_queue.put(([support, support_negative, query, negative], curr_rel)) | result_queue.put(([support, support_negative, query, negative], curr_rel)) | ||||
class WarpSampler(object): | class WarpSampler(object): | ||||
def __init__(self, User, usernum, itemnum, batch_size=64, maxlen=10, n_workers=1,params = None): | |||||
def __init__(self, User, usernum, itemnum, batch_size=64, maxlen=10, n_workers=1): | |||||
self.result_queue = Queue(maxsize=n_workers * 10) | self.result_queue = Queue(maxsize=n_workers * 10) | ||||
self.processors = [] | self.processors = [] | ||||
for i in range(n_workers): | for i in range(n_workers): | ||||
self.processors.append( | self.processors.append( | ||||
Process(target=sample_function_mixed, args=(User, | Process(target=sample_function_mixed, args=(User, | ||||
usernum, | |||||
itemnum, | |||||
batch_size, | |||||
maxlen, | |||||
self.result_queue, | |||||
np.random.randint(2e9), | |||||
params['number_of_neg'] | |||||
))) | |||||
usernum, | |||||
itemnum, | |||||
batch_size, | |||||
maxlen, | |||||
self.result_queue, | |||||
np.random.randint(2e9) | |||||
))) | |||||
self.processors[-1].daemon = True | self.processors[-1].daemon = True | ||||
self.processors[-1].start() | self.processors[-1].start() | ||||
for p in self.processors: | for p in self.processors: | ||||
p.terminate() | p.terminate() | ||||
p.join() | p.join() | ||||
from models import * | from models import * | ||||
import os | import os | ||||
import sys | import sys | ||||
import torch | |||||
import shutil | import shutil | ||||
import logging | import logging | ||||
import numpy as np | import numpy as np | ||||
import random | |||||
import copy | |||||
from operator import itemgetter | |||||
import gc | |||||
class Trainer: | class Trainer: | ||||
def __init__(self, data_loaders, itemnum, parameter): | |||||
def __init__(self, data_loaders, itemnum, parameter, user_train_num, user_train): | |||||
# print(user_train) | |||||
self.parameter = parameter | self.parameter = parameter | ||||
# data loader | # data loader | ||||
self.train_data_loader = data_loaders[0] | self.train_data_loader = data_loaders[0] | ||||
self.batch_size = parameter['batch_size'] | self.batch_size = parameter['batch_size'] | ||||
self.learning_rate = parameter['learning_rate'] | self.learning_rate = parameter['learning_rate'] | ||||
self.epoch = parameter['epoch'] | self.epoch = parameter['epoch'] | ||||
# self.print_epoch = parameter['print_epoch'] | |||||
# self.eval_epoch = parameter['eval_epoch'] | |||||
# self.device = torch.device(parameter['device']) | |||||
self.device = parameter['device'] | self.device = parameter['device'] | ||||
self.MetaTL = MetaTL(itemnum, parameter) | self.MetaTL = MetaTL(itemnum, parameter) | ||||
self.MetaTL.to(parameter['device']) | self.MetaTL.to(parameter['device']) | ||||
self.optimizer = torch.optim.Adam(self.MetaTL.parameters(), self.learning_rate) | self.optimizer = torch.optim.Adam(self.MetaTL.parameters(), self.learning_rate) | ||||
if parameter['eval_epoch']: | if parameter['eval_epoch']: | ||||
self.eval_epoch = parameter['eval_epoch'] | self.eval_epoch = parameter['eval_epoch'] | ||||
else: | else: | ||||
self.eval_epoch = 1000 | self.eval_epoch = 1000 | ||||
self.varset_size = parameter['varset_size'] | |||||
self.user_train = user_train | |||||
self.warmup = parameter['warmup'] | |||||
self.alpha = parameter['alpha'] | |||||
self.S1 = parameter['S1'] | |||||
self.S2_div_S1 = parameter['S2_div_S1'] | |||||
self.temperature = parameter['temperature'] | |||||
self.itemnum = itemnum | |||||
self.user_train_num = user_train_num | |||||
# init the two candidate sets for monitoring variance | |||||
self.candidate_cur = np.random.choice(itemnum, [user_train_num + 1, self.varset_size]) | |||||
# for i in range(1,user_train_num+1): | |||||
# for j in range(self.varset_size): | |||||
# while self.candidate_cur[i, j] in user_train[i]: | |||||
# self.candidate_cur[i, j] = random.randint(1, itemnum) | |||||
# self.candidate_nxt = [np.random.choice(itemnum, [user_train_num+1, self.varset_size]) for _ in range(5)] | |||||
# for c in range(5): | |||||
# for i in range(1,user_train_num+1): | |||||
# for j in range(self.varset_size): | |||||
# while self.candidate_nxt[c][i, j] in user_train[i]: | |||||
# self.candidate_nxt[c][i, j] = random.randint(1, itemnum) | |||||
self.Mu_idx = {} | |||||
for i in range(user_train_num + 1): | |||||
Mu_idx_tmp = random.sample(list(range(self.varset_size)), self.S1) | |||||
self.Mu_idx[i] = Mu_idx_tmp | |||||
# todo : calculate score of positive items | |||||
self.score_cand_cur = {} | |||||
self.score_pos_cur = {} | |||||
# final candidate after execution of change_mu (after one_step) (for later epochs) | |||||
self.final_negative_items = {} | |||||
def change_mu(self, p_score, n_score, epoch_cur, users, train_task): | |||||
negitems = {} | |||||
negitems_candidates_all = {} | |||||
# for i in users: | |||||
# negitems_candidates_all[i] = self.Mu_idx[i] | |||||
negitems_candidates_all = self.Mu_idx.copy() | |||||
ratings_positems = p_score.cpu().detach().numpy() | |||||
ratings_positems = np.reshape(ratings_positems, [-1]) | |||||
# added | |||||
cnt = 0 | |||||
for i in users: | |||||
self.score_pos_cur[i] = ratings_positems[cnt] | |||||
cnt += 1 | |||||
Mu_items_all = {index: value[negitems_candidates_all[i]] for index, value in enumerate(self.candidate_cur)} | |||||
task = np.array(train_task[2]) | |||||
task = np.tile(task, reps=(1, self.S1, 1)) | |||||
task[:, :, 2] = np.array(itemgetter(*users)(Mu_items_all)) | |||||
ratings_candidates_all = self.MetaTL.fast_forward(task, users) | |||||
hisscore_candidates_all = [self.score_cand_cur[i][:, negitems_candidates_all[i]] for user in users] | |||||
hisscore_pos_all = ratings_positems.copy() | |||||
hisscore_candidates_all = np.array(hisscore_candidates_all).transpose((1, 0, 2)) | |||||
hisscore_pos_all = np.array(hisscore_pos_all) | |||||
hisscore_pos_all = hisscore_pos_all[:, np.newaxis] | |||||
hisscore_pos_all = np.tile(hisscore_pos_all, (hisscore_candidates_all.shape[0], 1, 1)) | |||||
hislikelihood_candidates_all = 1 / (1 + np.exp(hisscore_pos_all - hisscore_candidates_all)) | |||||
mean_candidates_all = np.mean(hislikelihood_candidates_all[:, :], axis=0) | |||||
variance_candidates_all = np.zeros(mean_candidates_all.shape) | |||||
for i in range(hislikelihood_candidates_all.shape[0]): | |||||
variance_candidates_all += (hislikelihood_candidates_all[i, :, :] - mean_candidates_all) ** 2 | |||||
variance_candidates_all = np.sqrt(variance_candidates_all / hislikelihood_candidates_all.shape[0]) | |||||
likelihood_candidates_all = \ | |||||
1 / (1 + np.exp(np.expand_dims(ratings_positems, -1) - ratings_candidates_all)) | |||||
# Top sampling strategy by score + alpha * std | |||||
item_arg_all = None | |||||
if self.alpha >= 0: | |||||
# item_arg_all = np.argmax(likelihood_candidates_all + | |||||
# self.alpha * min(1, epoch_cur / self.warmup) | |||||
# * variance_candidates_all, axis=1) | |||||
a = likelihood_candidates_all + self.alpha * min(1, epoch_cur / self.warmup) * variance_candidates_all | |||||
item_arg_all = np.argpartition(a, kth=(-2), axis=1) | |||||
item_arg_all = np.array(item_arg_all)[:, -2:] | |||||
else: | |||||
item_arg_all = np.argmax(variance_candidates_all, axis=1) | |||||
# negitems = { user : self.candidate_cur[user][negitems_candidates_all[user][item_arg_all[index]]] for index,user in enumerate(users)} | |||||
negitems0 = {user: self.candidate_cur[user][negitems_candidates_all[user][item_arg_all[index][0]]] for | |||||
index, user in enumerate(users)} | |||||
negitems1 = {user: self.candidate_cur[user][negitems_candidates_all[user][item_arg_all[index][1]]] for | |||||
index, user in enumerate(users)} | |||||
############################### | |||||
for i in users: | |||||
self.final_negative_items[i] = [negitems0[i], negitems1[i]] | |||||
############################### | |||||
# update Mu | |||||
negitems_mu_candidates = {} | |||||
for i in users: | |||||
Mu_set = set(self.Mu_idx[i]) | |||||
while len(self.Mu_idx[i]) < self.S1 * (1 + self.S2_div_S1): | |||||
random_item = random.randint(0, self.candidate_cur.shape[1] - 1) | |||||
while random_item in Mu_set: | |||||
random_item = random.randint(0, self.candidate_cur.shape[1] - 1) | |||||
self.Mu_idx[i].append(random_item) | |||||
negitems_mu_candidates[i] = self.Mu_idx[i] | |||||
negitems_mu = {} | |||||
negitems_mu = {user: self.candidate_cur[user][negitems_mu_candidates[user]] for user in users} | |||||
task = np.array(train_task[2]) | |||||
task = np.tile(task, reps=(1, self.S1 * (1 + self.S2_div_S1), 1)) | |||||
task[:, :, 2] = np.array(itemgetter(*users)(negitems_mu)) | |||||
ratings_mu_candidates = self.MetaTL.fast_forward(task, users) | |||||
ratings_mu_candidates = ratings_mu_candidates / self.temperature | |||||
if np.any(np.isnan(ratings_mu_candidates)): | |||||
print("nan happend in ratings_mu_candidates") | |||||
ratings_mu_candidates = np.nan_to_num(ratings_mu_candidates) | |||||
ratings_mu_candidates = np.exp(ratings_mu_candidates) / np.reshape( | |||||
np.sum(np.exp(ratings_mu_candidates), axis=1), [-1, 1]) | |||||
if np.any(np.isnan(ratings_mu_candidates)): | |||||
print("nan happend__2 in ratings_mu_candidates") | |||||
ratings_mu_candidates = self.MetaTL.fast_forward(task, users) | |||||
ratings_mu_candidates = ratings_mu_candidates / self.temperature | |||||
ratings_mu_candidates = ratings_mu_candidates + 100 | |||||
ratings_mu_candidates = np.exp(ratings_mu_candidates) / np.reshape( | |||||
np.sum(np.exp(ratings_mu_candidates), axis=1), [-1, 1]) | |||||
user_set = set() | |||||
cnt = 0 | |||||
for i in users: | |||||
if i in user_set: | |||||
continue | |||||
else: | |||||
user_set.add(i) | |||||
cache_arg = np.random.choice(self.S1 * (1 + self.S2_div_S1), self.S1, | |||||
p=ratings_mu_candidates[cnt], replace=False) | |||||
self.Mu_idx[i] = np.array(self.Mu_idx[i])[cache_arg].tolist() | |||||
cnt += 1 | |||||
second_cand = 0 | |||||
del negitems, ratings_positems, Mu_items_all, task, ratings_candidates_all, hisscore_candidates_all, hisscore_pos_all | |||||
del hislikelihood_candidates_all, mean_candidates_all, variance_candidates_all, likelihood_candidates_all, second_cand | |||||
del negitems_mu, ratings_mu_candidates, user_set | |||||
gc.collect() | |||||
def change_candidate(self, epoch_count): | |||||
score_1epoch_nxt = [] | |||||
for c in range(5): | |||||
# todo: implement proper funciton | |||||
pred = self.MetaTL(self.MetaTL.rel_q_sharing.keys(), self.candidate_nxt[c]) | |||||
score_1epoch_nxt.append(np.array(pred)) | |||||
# score_1epoch_nxt.append(np.array(/ | |||||
# [EvalUser.predict_fast(model, sess, num_user, num_item, parallel_users=100, | |||||
# predict_data=candidate_nxt[c])])) | |||||
# score_1epoch_pos = np.array( | |||||
# [EvalUser.predict_pos(model, sess, num_user, max_posid, parallel_users=100, predict_data=train_pos)]) | |||||
# todo: implement proper function | |||||
score_1epoch_pos = self.MetaTL(user_train, train_data) | |||||
# delete the score_cand_cur[0,:,:] at the earlist timestamp | |||||
if epoch_count >= 5 or epoch_count == 0: | |||||
self.score_pos_cur = np.delete(self.score_pos_cur, 0, 0) | |||||
for c in range(5): | |||||
self.score_cand_nxt[c] = np.concatenate([self.score_cand_nxt[c], score_1epoch_nxt[c]], axis=0) | |||||
self.score_pos_cur = np.concatenate([self.score_pos_cur, score_1epoch_pos], axis=0) | |||||
score_cand_cur = np.copy(self.score_cand_nxt[0]) | |||||
candidate_cur = np.copy(self.candidate_nxt[0]) | |||||
for c in range(4): | |||||
self.candidate_nxt[c] = np.copy(self.candidate_nxt[c + 1]) | |||||
self.score_cand_nxt[c] = np.copy(self.score_cand_nxt[c + 1]) | |||||
self.candidate_nxt[4] = np.random.choice(list(range(1, self.itemnum)), [self.user_train_num, self.varset_size]) | |||||
for i in range(self.user_train_num): | |||||
for j in range(self.varset_size): | |||||
while self.candidate_nxt[4][i, j] in self.user_train[i]: | |||||
self.candidate_nxt[4][i, j] = random.randint(0, self.itemnum - 1) | |||||
self.score_cand_nxt[4] = np.delete(self.score_cand_nxt[4], list(range(5)), 0) | |||||
def rank_predict(self, data, x, ranks): | def rank_predict(self, data, x, ranks): | ||||
# query_idx is the idx of positive score | # query_idx is the idx of positive score | ||||
data['NDCG@1'] += 1 / np.log2(rank + 1) | data['NDCG@1'] += 1 / np.log2(rank + 1) | ||||
data['MRR'] += 1.0 / rank | data['MRR'] += 1.0 / rank | ||||
def do_one_step(self, task, iseval=False, curr_rel=''): | |||||
def do_one_step(self, task, iseval=False, curr_rel='', epoch=None, train_task=None, epoch_count=None): | |||||
loss, p_score, n_score = 0, 0, 0 | loss, p_score, n_score = 0, 0, 0 | ||||
if not iseval: | if not iseval: | ||||
task_new = copy.deepcopy(np.array(task[2])) | |||||
cnt = 0 | |||||
for user in curr_rel: | |||||
if user in self.final_negative_items: | |||||
for index, t in enumerate(task[1][cnt]): | |||||
if index % 2 == 0: | |||||
t[2] = self.final_negative_items[user][0] | |||||
else: | |||||
t[2] = self.final_negative_items[user][1] | |||||
cnt += 1 | |||||
self.optimizer.zero_grad() | self.optimizer.zero_grad() | ||||
p_score, n_score = self.MetaTL(task, iseval, curr_rel) | p_score, n_score = self.MetaTL(task, iseval, curr_rel) | ||||
y = torch.Tensor([1]).to(self.device) | y = torch.Tensor([1]).to(self.device) | ||||
loss = self.MetaTL.loss_func(p_score, n_score,self.device) | |||||
loss = self.MetaTL.loss_func(p_score, n_score, y) | |||||
loss.backward() | loss.backward() | ||||
self.optimizer.step() | self.optimizer.step() | ||||
# task_new = np.array(task[2]) | |||||
task_new = np.tile(task_new, reps=(1, self.varset_size, 1)) | |||||
task_new[:, :, 2] = np.array(itemgetter(*curr_rel)(self.candidate_cur)) | |||||
data = self.MetaTL.fast_forward(task_new, curr_rel) | |||||
# prepare score_cand_cur (make all users to have the same number of history scores) | |||||
temp = min(epoch_count, 4) | |||||
for index, user in enumerate(curr_rel): | |||||
if (not user in self.score_cand_cur): | |||||
self.score_cand_cur[user] = np.array([data[index]]) | |||||
elif len(self.score_cand_cur[user]) <= temp: | |||||
self.score_cand_cur[user] = np.concatenate( | |||||
[self.score_cand_cur[user], np.array([data[index]])], axis=0) | |||||
self.change_mu(p_score, n_score, epoch_count, curr_rel, task) | |||||
elif curr_rel != '': | elif curr_rel != '': | ||||
p_score, n_score = self.MetaTL(task, iseval, curr_rel) | p_score, n_score = self.MetaTL(task, iseval, curr_rel) | ||||
y = torch.Tensor([1]).to(self.device) | y = torch.Tensor([1]).to(self.device) | ||||
loss = self.MetaTL.loss_func(p_score, n_score,self.device) | |||||
loss = self.MetaTL.loss_func(p_score, n_score, y) | |||||
return loss, p_score, n_score | return loss, p_score, n_score | ||||
def train(self): | def train(self): | ||||
best_epoch = 0 | best_epoch = 0 | ||||
best_value = 0 | best_value = 0 | ||||
bad_counts = 0 | bad_counts = 0 | ||||
epoch_count = 0 | |||||
# training by epoch | # training by epoch | ||||
for e in range(self.epoch): | for e in range(self.epoch): | ||||
if e % 10 == 0: print("epoch:", e) | |||||
# sample one batch from data_loader | # sample one batch from data_loader | ||||
train_task, curr_rel = self.train_data_loader.next_batch() | train_task, curr_rel = self.train_data_loader.next_batch() | ||||
loss, _, _ = self.do_one_step(train_task, iseval=False, curr_rel=curr_rel) | |||||
# change task negative samples using mu_idx | |||||
loss, _, _ = self.do_one_step(train_task, iseval=False, curr_rel=curr_rel, epoch=e, train_task=train_task, | |||||
epoch_count=epoch_count) | |||||
# after ten epoch epoch | |||||
if (e % 2500 == 0) and e != 0: | |||||
# init the two candidate sets for monitoring variance | |||||
self.candidate_cur = np.random.choice(self.itemnum, [self.user_train_num + 1, self.varset_size]) | |||||
for i in range(1, self.user_train_num + 1): | |||||
for j in range(self.varset_size): | |||||
while self.candidate_cur[i, j] in self.user_train[i]: | |||||
self.candidate_cur[i, j] = random.randint(1, self.itemnum) | |||||
self.Mu_idx = {} | |||||
for i in range(self.user_train_num + 1): | |||||
Mu_idx_tmp = random.sample(list(range(self.varset_size)), self.S1) | |||||
self.Mu_idx[i] = Mu_idx_tmp | |||||
self.score_cand_cur = {} | |||||
self.score_pos_cur = {} | |||||
self.final_negative_items = {} | |||||
# reset epoch_count has many effects on the chnage_mu and one_step and train function | |||||
epoch_count = 0 | |||||
# after one epoch | |||||
elif e % 25 == 0 and e != 0: | |||||
self.check_complenteness(epoch_count) | |||||
print("epoch_count:", epoch_count) | |||||
print("=========================\n\n") | |||||
epoch_count += 1 | |||||
# do evaluation on specific epoch | # do evaluation on specific epoch | ||||
if e % self.eval_epoch == 0 and e != 0: | if e % self.eval_epoch == 0 and e != 0: | ||||
print('Epoch {} Testing...'.format(e)) | print('Epoch {} Testing...'.format(e)) | ||||
test_data = self.eval(istest=True, epoch=e) | test_data = self.eval(istest=True, epoch=e) | ||||
# original = r'/content/results.txt' | |||||
# target = r'/content/drive/MyDrive/MetaTL/MetaTL_v3/results.txt' | |||||
# shutil.copyfile(original, target) | |||||
# print(self.candidate_cur[curr_rel[0]],self.score_cand_cur[curr_rel[0]]) | |||||
print('Finish') | print('Finish') | ||||
def eval(self, istest=False, epoch=None): | def eval(self, istest=False, epoch=None): | ||||
# self.MetaTL.eval() | |||||
torch.backends.cudnn.enabled = False | |||||
self.MetaTL.eval() | |||||
self.MetaTL.rel_q_sharing = dict() | self.MetaTL.rel_q_sharing = dict() | ||||
if istest: | if istest: | ||||
# print current temp data dynamically | # print current temp data dynamically | ||||
for k in data.keys(): | for k in data.keys(): | ||||
temp[k] = data[k] / t | temp[k] = data[k] / t | ||||
# sys.stdout.write("{}\tMRR: {:.3f}\tNDCG@10: {:.3f}\tNDCG@5: {:.3f}\tNDCG@1: {:.3f}\tHits@10: {:.3f}\tHits@5: {:.3f}\tHits@1: {:.3f}\r".format( | |||||
# t, temp['MRR'], temp['NDCG@10'], temp['NDCG@5'], temp['NDCG@1'], temp['Hits@10'], temp['Hits@5'], temp['Hits@1'])) | |||||
# sys.stdout.flush() | |||||
# print overall evaluation result and return it | # print overall evaluation result and return it | ||||
for k in data.keys(): | for k in data.keys(): | ||||
data[k] = round(data[k] / t, 3) | data[k] = round(data[k] / t, 3) | ||||
print("\n") | |||||
if istest: | if istest: | ||||
print("TEST: \t test_loss: ",total_loss.detach().item()) | |||||
print("TEST: \tMRR: {:.3f}\tNDCG@10: {:.3f}\tNDCG@5: {:.3f}\tNDCG@1: {:.3f}\tHits@10: {:.3f}\tHits@5: {:.3f}\tHits@1: {:.3f}\r".format( | |||||
temp['MRR'], temp['NDCG@10'], temp['NDCG@5'], temp['NDCG@1'], temp['Hits@10'], temp['Hits@5'], temp['Hits@1']),"\n") | |||||
print("TEST: \t test_loss: ", total_loss.detach().item()) | |||||
print( | |||||
"TEST: \tMRR: {:.3f}\tNDCG@10: {:.3f}\tNDCG@5: {:.3f}\tNDCG@1: {:.3f}\tHits@10: {:.3f}\tHits@5: {:.3f}\tHits@1: {:.3f}\r".format( | |||||
temp['MRR'], temp['NDCG@10'], temp['NDCG@5'], temp['NDCG@1'], temp['Hits@10'], temp['Hits@5'], | |||||
temp['Hits@1'])) | |||||
with open('results.txt', 'a') as f: | with open('results.txt', 'a') as f: | ||||
f.writelines("TEST: \tMRR: {:.3f}\tNDCG@10: {:.3f}\tNDCG@5: {:.3f}\tNDCG@1: {:.3f}\tHits@10: {:.3f}\tHits@5: {:.3f}\tHits@1: {:.3f}\r\n\n".format( | |||||
temp['MRR'], temp['NDCG@10'], temp['NDCG@5'], temp['NDCG@1'], temp['Hits@10'], temp['Hits@5'], temp['Hits@1'])) | |||||
f.writelines( | |||||
"TEST: \tMRR: {:.3f}\tNDCG@10: {:.3f}\tNDCG@5: {:.3f}\tNDCG@1: {:.3f}\tHits@10: {:.3f}\tHits@5: {:.3f}\tHits@1: {:.3f}\r\n\n".format( | |||||
temp['MRR'], temp['NDCG@10'], temp['NDCG@5'], temp['NDCG@1'], temp['Hits@10'], temp['Hits@5'], | |||||
temp['Hits@1'])) | |||||
else: | else: | ||||
print("VALID: \t validation_loss: ", total_loss.detach().item() ) | |||||
print("VALID: \tMRR: {:.3f}\tNDCG@10: {:.3f}\tNDCG@5: {:.3f}\tNDCG@1: {:.3f}\tHits@10: {:.3f}\tHits@5: {:.3f}\tHits@1: {:.3f}\r".format( | |||||
temp['MRR'], temp['NDCG@10'], temp['NDCG@5'], temp['NDCG@1'], temp['Hits@10'], temp['Hits@5'], temp['Hits@1'])) | |||||
with open("results.txt",'a') as f: | |||||
f.writelines("VALID: \tMRR: {:.3f}\tNDCG@10: {:.3f}\tNDCG@5: {:.3f}\tNDCG@1: {:.3f}\tHits@10: {:.3f}\tHits@5: {:.3f}\tHits@1: {:.3f}\r".format( | |||||
temp['MRR'], temp['NDCG@10'], temp['NDCG@5'], temp['NDCG@1'], temp['Hits@10'], temp['Hits@5'], temp['Hits@1'])) | |||||
return data | |||||
print("VALID: \t validation_loss: ", total_loss.detach().item()) | |||||
print( | |||||
"VALID: \tMRR: {:.3f}\tNDCG@10: {:.3f}\tNDCG@5: {:.3f}\tNDCG@1: {:.3f}\tHits@10: {:.3f}\tHits@5: {:.3f}\tHits@1: {:.3f}\r".format( | |||||
temp['MRR'], temp['NDCG@10'], temp['NDCG@5'], temp['NDCG@1'], temp['Hits@10'], temp['Hits@5'], | |||||
temp['Hits@1'])) | |||||
with open("results.txt", 'a') as f: | |||||
f.writelines( | |||||
"VALID: \tMRR: {:.3f}\tNDCG@10: {:.3f}\tNDCG@5: {:.3f}\tNDCG@1: {:.3f}\tHits@10: {:.3f}\tHits@5: {:.3f}\tHits@1: {:.3f}\r".format( | |||||
temp['MRR'], temp['NDCG@10'], temp['NDCG@5'], temp['NDCG@1'], temp['Hits@10'], temp['Hits@5'], | |||||
temp['Hits@1'])) | |||||
print("\n") | |||||
del total_loss, p_score, n_score | |||||
gc.collect() | |||||
self.MetaTL.train() | |||||
torch.backends.cudnn.enabled = True | |||||
return data | |||||
def check_complenteness(self, epoch_count): | |||||
# un_users = set() | |||||
for user in list(self.user_train.keys()): | |||||
if not user in self.score_cand_cur: | |||||
self.score_cand_cur[user] = np.array([np.zeros(self.varset_size)]) | |||||
num = epoch_count - len(self.score_cand_cur[user]) + 1 | |||||
if num > 0 and len(self.score_cand_cur[user]) < 5: | |||||
# if num!=1 : print("bug happend1") | |||||
# un_users.add(user) | |||||
self.score_cand_cur[user] = np.concatenate( | |||||
[self.score_cand_cur[user], np.array([self.score_cand_cur[user][-1]])], axis=0) | |||||
if epoch_count >= 4: | |||||
t = 0 | |||||
for user in list(self.score_cand_cur.keys()): | |||||
t = user | |||||
# self.score_cand_cur[user] = np.delete(self.score_cand_cur[user], 0, 0) | |||||
self.score_cand_cur[user] = self.score_cand_cur[user][-4:] |
from multiprocessing import Process, Queue | from multiprocessing import Process, Queue | ||||
# sampler for batch generation | # sampler for batch generation | ||||
def random_neq(l, r, s,user_train): | |||||
# t = np.random.randint(l, r) | |||||
# while t in s: | |||||
# t = np.random.randint(l, r) | |||||
# return t | |||||
def random_neq(l, r, s): | |||||
t = np.random.randint(l, r) | |||||
while t in s: | |||||
t = np.random.randint(l, r) | |||||
return t | |||||
user = random.choice(list(user_train.keys())) | |||||
item = random.choice(user_train[user]) | |||||
while item in s: | |||||
user = random.choice(list(user_train.keys())) | |||||
item = random.choice(user_train[user]) | |||||
return item | |||||
# user = random.choice(list(user_train.keys())) | |||||
# item = random.choice(user_train[user]) | |||||
# | |||||
# while item in s: | |||||
# user = random.choice(list(user_train.keys())) | |||||
# item = random.choice(user_train[user]) | |||||
# return item | |||||
def trans_to_cuda(variable): | def trans_to_cuda(variable): | ||||
self.itemnum = itemnum | self.itemnum = itemnum | ||||
if parameter['number_of_neg']: | |||||
self.number_of_neg = parameter['number_of_neg'] | |||||
else: | |||||
self.number_of_neg = 5 | |||||
# if parameter['number_of_neg']: | |||||
# self.number_of_neg = parameter['number_of_neg'] | |||||
# else: | |||||
# self.number_of_neg = 5 | |||||
def next_one_on_eval(self): | def next_one_on_eval(self): | ||||
seq = np.zeros([self.maxlen], dtype=np.int32) | seq = np.zeros([self.maxlen], dtype=np.int32) | ||||
pos = np.zeros([self.maxlen - 1], dtype=np.int32) | pos = np.zeros([self.maxlen - 1], dtype=np.int32) | ||||
neg = np.zeros([self.maxlen * self.number_of_neg], dtype=np.int32) | |||||
# neg = np.zeros([self.maxlen * self.number_of_neg], dtype=np.int32) | |||||
neg = np.zeros([self.maxlen - 1], dtype=np.int32) | |||||
idx = self.maxlen - 1 | idx = self.maxlen - 1 | ||||
ts = set(self.train[u]) | ts = set(self.train[u]) | ||||
seq[idx] = i | seq[idx] = i | ||||
if idx > 0: | if idx > 0: | ||||
pos[idx - 1] = i | pos[idx - 1] = i | ||||
# if i != 0: neg[idx - 1] = random_neq(1, self.itemnum + 1, ts,self.train) | |||||
if i != 0: neg[idx - 1] = random_neq(1, self.itemnum + 1, ts) | |||||
idx -= 1 | idx -= 1 | ||||
if idx == -1: break | if idx == -1: break | ||||
for i in range(len(neg)): | |||||
neg[i] = random_neq(1, self.itemnum + 1, ts,self.train) | |||||
# for i in range(len(neg)): | |||||
# neg[i] = random_neq(1, self.itemnum + 1, ts,self.train) | |||||
curr_rel = u | curr_rel = u | ||||
support_triples, support_negative_triples, query_triples, negative_triples = [], [], [], [] | support_triples, support_negative_triples, query_triples, negative_triples = [], [], [], [] | ||||
for idx in range(self.maxlen-1): | for idx in range(self.maxlen-1): | ||||
support_triples.append([seq[idx],curr_rel,pos[idx]]) | support_triples.append([seq[idx],curr_rel,pos[idx]]) | ||||
# support_negative_triples.append([seq[idx],curr_rel,neg[idx]]) | |||||
support_negative_triples.append([seq[idx],curr_rel,neg[idx]]) | |||||
# support_negative_triples.append([seq[-1],curr_rel,neg[idx]]) | # support_negative_triples.append([seq[-1],curr_rel,neg[idx]]) | ||||
# for idx in range(len(neg)): | # for idx in range(len(neg)): | ||||
# support_negative_triples.append([seq[-1],curr_rel,neg[idx]]) | # support_negative_triples.append([seq[-1],curr_rel,neg[idx]]) | ||||
# print("injam",self.maxlen,list(range(self.maxlen-1))) | # print("injam",self.maxlen,list(range(self.maxlen-1))) | ||||
# print("====") | # print("====") | ||||
for j in range(self.number_of_neg): | |||||
for idx in range(self.maxlen-1): | |||||
# print(j * self.maxlen + idx) | |||||
support_negative_triples.append([seq[idx], curr_rel, neg[j * (self.maxlen-1) + idx]]) | |||||
# for j in range(self.number_of_neg): | |||||
# for idx in range(self.maxlen-1): | |||||
# # print(j * self.maxlen + idx) | |||||
# support_negative_triples.append([seq[idx], curr_rel, neg[j * (self.maxlen-1) + idx]]) | |||||
# print("=end=\n\n") | # print("=end=\n\n") | ||||
rated = ts | rated = ts |