Browse Source

Update 'README.md'

master
Mehran Advand 4 days ago
parent
commit
8e087592df
1 changed files with 18 additions and 37 deletions
  1. 18
    37
      README.md

+ 18
- 37
README.md View File

@@ -1,44 +1,25 @@
# 3DLAND
<<<<<<< HEAD
Organ-aware 3D lesion segmentation dataset and pipeline for abdominal CT analysis (ACM Multimedia 2025)
<h1 align="center">3DLAND: 3D Lesion Abdominal Anomaly Localization Dataset</h1>

# 3DLAND: 3D Lesion Abdominal Anomaly Localization Dataset
<div align="center">

This repository contains the code and dataset instructions for **3DLAND**, the first large-scale, organ-aware 3D lesion segmentation benchmark for abdominal CT scans, introduced at *ACM Multimedia 2025*.
![visitors](https://visitor-badge.laobi.icu/badge?page_id=mehran.advand/3DLAND&left_color=%234CAF50&right_color=%23FFC107)
[![GitHub Repo stars](https://img.shields.io/github/stars/mehran.advand/3DLAND?style=social)](https://git.dml.ir/mehran.advand/3DLAND/stargazers)
<a href="https://twitter.com/bodymaps317">
<img src="https://img.shields.io/twitter/follow/BodyMaps?style=social" alt="Follow on Twitter" />
</a><br/>
**Subscribe for updates: [3DLAND Google Group](https://groups.google.com/g/3dland-dataset)**

## 🌐 Overview
</div>

- 6,000+ contrast-enhanced CT studies
- 3D lesion masks aligned with 7 abdominal organs
- Prompt-based annotation and propagation pipeline
- Applications: anomaly detection, lesion retrieval, organ-aware analysis
We introduce **3DLAND**, the first large-scale, **organ-aware** 3D lesion segmentation dataset for contrast-enhanced **abdominal CT scans**.

## 🧠 Pipeline
- πŸ“¦ **6,000+** CT volumes
- 🧠 3D Lesions labeled across **7 abdominal organs**: liver, kidneys, spleen, pancreas, stomach, gallbladder
- πŸ€– Built using a **prompt-driven**, expert-verified segmentation pipeline
- βš™οΈ Designed for tasks such as anomaly detection, lesion retrieval, and multimedia-driven clinical AI

The lesion segmentation pipeline includes:
1. Organ segmentation via MONAI
2. Lesion-to-organ assignment
3. 2D mask generation using SAM prompts
4. 3D mask propagation using MedSAM2
This level of structured annotation would traditionally take **25+ years** of expert effort β€” 3DLAND accomplishes it in weeks using automated reasoning and deep learning.

## πŸ“¦ Dataset

The dataset (metadata + mask annotations) is hosted at:
πŸ‘‰ [Download via Zenodo](https://zenodo.org/...) *(or your link)*

## πŸ“„ License

The dataset and outputs are licensed under **CC BY 4.0**.
See the full license in the [LICENSE](LICENSE) file or at [creativecommons.org/licenses/by/4.0](https://creativecommons.org/licenses/by/4.0/)

## πŸš€ Getting Started

```bash
git clone https://github.com/yourusername/3DLAND.git
cd 3DLAND
pip install -r requirements.txt

=======

Organ-aware 3D lesion segmentation dataset and pipeline for abdominal CT analysis (ACM Multimedia 2025 candidate)
>>>>>>> c4a39cda4d97821fccd529e0c809c83af1abfc1c
<p align="center"><img width="90%" src="assets/3DLAND_pipeline_overview.jpg" /></p>
<p align="center"><img width="100%" src="assets/3DLAND_organs_chart.jpg" /></p>
<p align="center"><img width="60%" src="assets/3DLAND_prompt_strategy.png" /></p>

Loading…
Cancel
Save