| # 3DLAND | |||||
| <<<<<<< HEAD | |||||
| Organ-aware 3D lesion segmentation dataset and pipeline for abdominal CT analysis (ACM Multimedia 2025) | |||||
| <h1 align="center">3DLAND: 3D Lesion Abdominal Anomaly Localization Dataset</h1> | |||||
| # 3DLAND: 3D Lesion Abdominal Anomaly Localization Dataset | |||||
| <div align="center"> | |||||
| This repository contains the code and dataset instructions for **3DLAND**, the first large-scale, organ-aware 3D lesion segmentation benchmark for abdominal CT scans, introduced at *ACM Multimedia 2025*. | |||||
|  | |||||
| [](https://git.dml.ir/mehran.advand/3DLAND/stargazers) | |||||
| <a href="https://twitter.com/bodymaps317"> | |||||
| <img src="https://img.shields.io/twitter/follow/BodyMaps?style=social" alt="Follow on Twitter" /> | |||||
| </a><br/> | |||||
| **Subscribe for updates: [3DLAND Google Group](https://groups.google.com/g/3dland-dataset)** | |||||
| ## π Overview | |||||
| </div> | |||||
| - 6,000+ contrast-enhanced CT studies | |||||
| - 3D lesion masks aligned with 7 abdominal organs | |||||
| - Prompt-based annotation and propagation pipeline | |||||
| - Applications: anomaly detection, lesion retrieval, organ-aware analysis | |||||
| We introduce **3DLAND**, the first large-scale, **organ-aware** 3D lesion segmentation dataset for contrast-enhanced **abdominal CT scans**. | |||||
| ## π§ Pipeline | |||||
| - π¦ **6,000+** CT volumes | |||||
| - π§ 3D Lesions labeled across **7 abdominal organs**: liver, kidneys, spleen, pancreas, stomach, gallbladder | |||||
| - π€ Built using a **prompt-driven**, expert-verified segmentation pipeline | |||||
| - βοΈ Designed for tasks such as anomaly detection, lesion retrieval, and multimedia-driven clinical AI | |||||
| The lesion segmentation pipeline includes: | |||||
| 1. Organ segmentation via MONAI | |||||
| 2. Lesion-to-organ assignment | |||||
| 3. 2D mask generation using SAM prompts | |||||
| 4. 3D mask propagation using MedSAM2 | |||||
| This level of structured annotation would traditionally take **25+ years** of expert effort β 3DLAND accomplishes it in weeks using automated reasoning and deep learning. | |||||
| ## π¦ Dataset | |||||
| The dataset (metadata + mask annotations) is hosted at: | |||||
| π [Download via Zenodo](https://zenodo.org/...) *(or your link)* | |||||
| ## π License | |||||
| The dataset and outputs are licensed under **CC BY 4.0**. | |||||
| See the full license in the [LICENSE](LICENSE) file or at [creativecommons.org/licenses/by/4.0](https://creativecommons.org/licenses/by/4.0/) | |||||
| ## π Getting Started | |||||
| ```bash | |||||
| git clone https://github.com/yourusername/3DLAND.git | |||||
| cd 3DLAND | |||||
| pip install -r requirements.txt | |||||
| ======= | |||||
| Organ-aware 3D lesion segmentation dataset and pipeline for abdominal CT analysis (ACM Multimedia 2025 candidate) | |||||
| >>>>>>> c4a39cda4d97821fccd529e0c809c83af1abfc1c | |||||
| <p align="center"><img width="90%" src="assets/3DLAND_pipeline_overview.jpg" /></p> | |||||
| <p align="center"><img width="100%" src="assets/3DLAND_organs_chart.jpg" /></p> | |||||
| <p align="center"><img width="60%" src="assets/3DLAND_prompt_strategy.png" /></p> |