eSpeak NG is an open source speech synthesizer that supports more than hundred languages and accents.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

klatt.c 31KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086
  1. /*
  2. * Copyright (C) 2008 by Jonathan Duddington
  3. * email: [email protected]
  4. * Copyright (C) 2013-2015 Reece H. Dunn
  5. *
  6. * Based on a re-implementation by:
  7. * (c) 1993,94 Jon Iles and Nick Ing-Simmons
  8. * of the Klatt cascade-parallel formant synthesizer
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License as published by
  12. * the Free Software Foundation; either version 3 of the License, or
  13. * (at your option) any later version.
  14. *
  15. * This program is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  18. * GNU General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU General Public License
  21. * along with this program; if not, see: <http://www.gnu.org/licenses/>.
  22. */
  23. // See URL: ftp://svr-ftp.eng.cam.ac.uk/pub/comp.speech/synthesis/klatt.3.04.tar.gz
  24. #include "config.h"
  25. #include <stdio.h>
  26. #include <stdlib.h>
  27. #include <math.h>
  28. #include <string.h>
  29. #if HAVE_STDINT_H
  30. #include <stdint.h>
  31. #endif
  32. #include "speak_lib.h"
  33. #include "speech.h"
  34. #include "klatt.h"
  35. #include "phoneme.h"
  36. #include "synthesize.h"
  37. #include "voice.h"
  38. extern unsigned char *out_ptr;
  39. extern unsigned char *out_start;
  40. extern unsigned char *out_end;
  41. extern WGEN_DATA wdata;
  42. static int nsamples;
  43. static int sample_count;
  44. #ifdef _MSC_VER
  45. #define getrandom(min, max) ((rand()%(int)(((max)+1)-(min)))+(min))
  46. #else
  47. #define getrandom(min, max) ((rand()%(long)(((max)+1)-(min)))+(min))
  48. #endif
  49. // function prototypes for functions private to this file
  50. static void flutter(klatt_frame_ptr);
  51. static double sampled_source(int);
  52. static double impulsive_source(void);
  53. static double natural_source(void);
  54. static void pitch_synch_par_reset(klatt_frame_ptr);
  55. static double gen_noise(double);
  56. static double DBtoLIN(long);
  57. static void frame_init(klatt_frame_ptr);
  58. static void setabc(long, long, resonator_ptr);
  59. static void setzeroabc(long, long, resonator_ptr);
  60. static klatt_frame_t kt_frame;
  61. static klatt_global_t kt_globals;
  62. #define NUMBER_OF_SAMPLES 100
  63. static int scale_wav_tab[] = { 45, 38, 45, 45, 55 }; // scale output from different voicing sources
  64. // For testing, this can be overwritten in KlattInit()
  65. static short natural_samples2[256] = {
  66. 2583, 2516, 2450, 2384, 2319, 2254, 2191, 2127,
  67. 2067, 2005, 1946, 1890, 1832, 1779, 1726, 1675,
  68. 1626, 1579, 1533, 1491, 1449, 1409, 1372, 1336,
  69. 1302, 1271, 1239, 1211, 1184, 1158, 1134, 1111,
  70. 1089, 1069, 1049, 1031, 1013, 996, 980, 965,
  71. 950, 936, 921, 909, 895, 881, 869, 855,
  72. 843, 830, 818, 804, 792, 779, 766, 754,
  73. 740, 728, 715, 702, 689, 676, 663, 651,
  74. 637, 626, 612, 601, 588, 576, 564, 552,
  75. 540, 530, 517, 507, 496, 485, 475, 464,
  76. 454, 443, 434, 424, 414, 404, 394, 385,
  77. 375, 366, 355, 347, 336, 328, 317, 308,
  78. 299, 288, 280, 269, 260, 250, 240, 231,
  79. 220, 212, 200, 192, 181, 172, 161, 152,
  80. 142, 133, 123, 113, 105, 94, 86, 76,
  81. 67, 57, 49, 39, 30, 22, 11, 4,
  82. -5, -14, -23, -32, -41, -50, -60, -69,
  83. -78, -87, -96, -107, -115, -126, -134, -144,
  84. -154, -164, -174, -183, -193, -203, -213, -222,
  85. -233, -242, -252, -262, -271, -281, -291, -301,
  86. -310, -320, -330, -339, -349, -357, -368, -377,
  87. -387, -397, -406, -417, -426, -436, -446, -456,
  88. -467, -477, -487, -499, -509, -521, -532, -543,
  89. -555, -567, -579, -591, -603, -616, -628, -641,
  90. -653, -666, -679, -692, -705, -717, -732, -743,
  91. -758, -769, -783, -795, -808, -820, -834, -845,
  92. -860, -872, -885, -898, -911, -926, -939, -955,
  93. -968, -986, -999, -1018, -1034, -1054, -1072, -1094,
  94. -1115, -1138, -1162, -1188, -1215, -1244, -1274, -1307,
  95. -1340, -1377, -1415, -1453, -1496, -1538, -1584, -1631,
  96. -1680, -1732, -1783, -1839, -1894, -1952, -2010, -2072,
  97. -2133, -2196, -2260, -2325, -2390, -2456, -2522, -2589,
  98. };
  99. static short natural_samples[100] = {
  100. -310, -400, 530, 356, 224, 89, 23, -10, -58, -16, 461, 599, 536, 701, 770,
  101. 605, 497, 461, 560, 404, 110, 224, 131, 104, -97, 155, 278, -154, -1165,
  102. -598, 737, 125, -592, 41, 11, -247, -10, 65, 92, 80, -304, 71, 167, -1, 122,
  103. 233, 161, -43, 278, 479, 485, 407, 266, 650, 134, 80, 236, 68, 260, 269, 179,
  104. 53, 140, 275, 293, 296, 104, 257, 152, 311, 182, 263, 245, 125, 314, 140, 44,
  105. 203, 230, -235, -286, 23, 107, 92, -91, 38, 464, 443, 176, 98, -784, -2449,
  106. -1891, -1045, -1600, -1462, -1384, -1261, -949, -730
  107. };
  108. /*
  109. function RESONATOR
  110. This is a generic resonator function. Internal memory for the resonator
  111. is stored in the globals structure.
  112. */
  113. static double resonator(resonator_ptr r, double input)
  114. {
  115. double x = (double)((double)r->a * (double)input + (double)r->b * (double)r->p1 + (double)r->c * (double)r->p2);
  116. r->p2 = (double)r->p1;
  117. r->p1 = (double)x;
  118. return (double)x;
  119. }
  120. static double resonator2(resonator_ptr r, double input)
  121. {
  122. double x = (double)((double)r->a * (double)input + (double)r->b * (double)r->p1 + (double)r->c * (double)r->p2);
  123. r->p2 = (double)r->p1;
  124. r->p1 = (double)x;
  125. r->a += r->a_inc;
  126. r->b += r->b_inc;
  127. r->c += r->c_inc;
  128. return (double)x;
  129. }
  130. static double antiresonator2(resonator_ptr r, double input)
  131. {
  132. register double x = (double)r->a * (double)input + (double)r->b * (double)r->p1 + (double)r->c * (double)r->p2;
  133. r->p2 = (double)r->p1;
  134. r->p1 = (double)input;
  135. r->a += r->a_inc;
  136. r->b += r->b_inc;
  137. r->c += r->c_inc;
  138. return (double)x;
  139. }
  140. /*
  141. function FLUTTER
  142. This function adds F0 flutter, as specified in:
  143. "Analysis, synthesis and perception of voice quality variations among
  144. female and male talkers" D.H. Klatt and L.C. Klatt JASA 87(2) February 1990.
  145. Flutter is added by applying a quasi-random element constructed from three
  146. slowly varying sine waves.
  147. */
  148. static void flutter(klatt_frame_ptr frame)
  149. {
  150. static int time_count;
  151. double fla = (double)kt_globals.f0_flutter / 50;
  152. double flb = (double)kt_globals.original_f0 / 100;
  153. double flc = sin(PI*12.7*time_count); // because we are calling flutter() more frequently, every 2.9mS
  154. double fld = sin(PI*7.1*time_count);
  155. double fle = sin(PI*4.7*time_count);
  156. double delta_f0 = fla * flb * (flc + fld + fle) * 10;
  157. frame->F0hz10 = frame->F0hz10 + (long)delta_f0;
  158. time_count++;
  159. }
  160. /*
  161. function SAMPLED_SOURCE
  162. Allows the use of a glottal excitation waveform sampled from a real
  163. voice.
  164. */
  165. static double sampled_source(int source_num)
  166. {
  167. double result;
  168. short *samples;
  169. if (source_num == 0) {
  170. samples = natural_samples;
  171. kt_globals.num_samples = 100;
  172. } else {
  173. samples = natural_samples2;
  174. kt_globals.num_samples = 256;
  175. }
  176. if (kt_globals.T0 != 0) {
  177. double ftemp = (double)kt_globals.nper;
  178. ftemp = ftemp / kt_globals.T0;
  179. ftemp = ftemp * kt_globals.num_samples;
  180. int itemp = (int)ftemp;
  181. double temp_diff = ftemp - (double)itemp;
  182. int current_value = samples[itemp];
  183. int next_value = samples[itemp+1];
  184. double diff_value = (double)next_value - (double)current_value;
  185. diff_value = diff_value * temp_diff;
  186. result = samples[itemp] + diff_value;
  187. result = result * kt_globals.sample_factor;
  188. } else
  189. result = 0;
  190. return result;
  191. }
  192. /*
  193. function PARWAVE
  194. Converts synthesis parameters to a waveform.
  195. */
  196. static int parwave(klatt_frame_ptr frame)
  197. {
  198. double temp;
  199. int value;
  200. double outbypas;
  201. double out;
  202. long n4;
  203. double frics;
  204. double glotout;
  205. double aspiration;
  206. double casc_next_in;
  207. double par_glotout;
  208. static double noise;
  209. static double voice;
  210. static double vlast;
  211. static double glotlast;
  212. static double sourc;
  213. int ix;
  214. flutter(frame); // add f0 flutter
  215. // MAIN LOOP, for each output sample of current frame:
  216. for (kt_globals.ns = 0; kt_globals.ns < kt_globals.nspfr; kt_globals.ns++) {
  217. // Get low-passed random number for aspiration and frication noise
  218. noise = gen_noise(noise);
  219. // Amplitude modulate noise (reduce noise amplitude during
  220. // second half of glottal period) if voicing simultaneously present.
  221. if (kt_globals.nper > kt_globals.nmod)
  222. noise *= (double)0.5;
  223. // Compute frication noise
  224. frics = kt_globals.amp_frica * noise;
  225. // Compute voicing waveform. Run glottal source simulation at 4
  226. // times normal sample rate to minimize quantization noise in
  227. // period of female voice.
  228. for (n4 = 0; n4 < 4; n4++) {
  229. switch (kt_globals.glsource)
  230. {
  231. case IMPULSIVE:
  232. voice = impulsive_source();
  233. break;
  234. case NATURAL:
  235. voice = natural_source();
  236. break;
  237. case SAMPLED:
  238. voice = sampled_source(0);
  239. break;
  240. case SAMPLED2:
  241. voice = sampled_source(1);
  242. break;
  243. }
  244. // Reset period when counter 'nper' reaches T0
  245. if (kt_globals.nper >= kt_globals.T0) {
  246. kt_globals.nper = 0;
  247. pitch_synch_par_reset(frame);
  248. }
  249. // Low-pass filter voicing waveform before downsampling from 4*samrate
  250. // to samrate samples/sec. Resonator f=.09*samrate, bw=.06*samrate
  251. voice = resonator(&(kt_globals.rsn[RLP]), voice);
  252. // Increment counter that keeps track of 4*samrate samples per sec
  253. kt_globals.nper++;
  254. }
  255. // Tilt spectrum of voicing source down by soft low-pass filtering, amount
  256. // of tilt determined by TLTdb
  257. voice = (voice * kt_globals.onemd) + (vlast * kt_globals.decay);
  258. vlast = voice;
  259. // Add breathiness during glottal open phase. Amount of breathiness
  260. // determined by parameter Aturb Use nrand rather than noise because
  261. // noise is low-passed.
  262. if (kt_globals.nper < kt_globals.nopen)
  263. voice += kt_globals.amp_breth * kt_globals.nrand;
  264. // Set amplitude of voicing
  265. glotout = kt_globals.amp_voice * voice;
  266. par_glotout = kt_globals.par_amp_voice * voice;
  267. // Compute aspiration amplitude and add to voicing source
  268. aspiration = kt_globals.amp_aspir * noise;
  269. glotout += aspiration;
  270. par_glotout += aspiration;
  271. // Cascade vocal tract, excited by laryngeal sources.
  272. // Nasal antiresonator, then formants FNP, F5, F4, F3, F2, F1
  273. out = 0;
  274. if (kt_globals.synthesis_model != ALL_PARALLEL) {
  275. casc_next_in = antiresonator2(&(kt_globals.rsn[Rnz]), glotout);
  276. casc_next_in = resonator(&(kt_globals.rsn[Rnpc]), casc_next_in);
  277. casc_next_in = resonator(&(kt_globals.rsn[R8c]), casc_next_in);
  278. casc_next_in = resonator(&(kt_globals.rsn[R7c]), casc_next_in);
  279. casc_next_in = resonator(&(kt_globals.rsn[R6c]), casc_next_in);
  280. casc_next_in = resonator2(&(kt_globals.rsn[R5c]), casc_next_in);
  281. casc_next_in = resonator2(&(kt_globals.rsn[R4c]), casc_next_in);
  282. casc_next_in = resonator2(&(kt_globals.rsn[R3c]), casc_next_in);
  283. casc_next_in = resonator2(&(kt_globals.rsn[R2c]), casc_next_in);
  284. out = resonator2(&(kt_globals.rsn[R1c]), casc_next_in);
  285. }
  286. // Excite parallel F1 and FNP by voicing waveform
  287. sourc = par_glotout; // Source is voicing plus aspiration
  288. // Standard parallel vocal tract Formants F6,F5,F4,F3,F2,
  289. // outputs added with alternating sign. Sound source for other
  290. // parallel resonators is frication plus first difference of
  291. // voicing waveform.
  292. out += resonator(&(kt_globals.rsn[R1p]), sourc);
  293. out += resonator(&(kt_globals.rsn[Rnpp]), sourc);
  294. sourc = frics + par_glotout - glotlast;
  295. glotlast = par_glotout;
  296. for (ix = R2p; ix <= R6p; ix++)
  297. out = resonator(&(kt_globals.rsn[ix]), sourc) - out;
  298. outbypas = kt_globals.amp_bypas * sourc;
  299. out = outbypas - out;
  300. out = resonator(&(kt_globals.rsn[Rout]), out);
  301. temp = (int)(out * wdata.amplitude * kt_globals.amp_gain0); // Convert back to integer
  302. // mix with a recorded WAV if required for this phoneme
  303. int z2;
  304. signed char c;
  305. int sample;
  306. z2 = 0;
  307. if (wdata.mix_wavefile_ix < wdata.n_mix_wavefile) {
  308. if (wdata.mix_wave_scale == 0) {
  309. // a 16 bit sample
  310. c = wdata.mix_wavefile[wdata.mix_wavefile_ix+1];
  311. sample = wdata.mix_wavefile[wdata.mix_wavefile_ix] + (c * 256);
  312. wdata.mix_wavefile_ix += 2;
  313. } else {
  314. // a 8 bit sample, scaled
  315. sample = (signed char)wdata.mix_wavefile[wdata.mix_wavefile_ix++] * wdata.mix_wave_scale;
  316. }
  317. z2 = sample * wdata.amplitude_v / 1024;
  318. z2 = (z2 * wdata.mix_wave_amp)/40;
  319. temp += z2;
  320. }
  321. // if fadeout is set, fade to zero over 64 samples, to avoid clicks at end of synthesis
  322. if (kt_globals.fadeout > 0) {
  323. kt_globals.fadeout--;
  324. temp = (temp * kt_globals.fadeout) / 64;
  325. }
  326. value = (int)temp + ((echo_buf[echo_tail++]*echo_amp) >> 8);
  327. if (echo_tail >= N_ECHO_BUF)
  328. echo_tail = 0;
  329. if (value < -32768)
  330. value = -32768;
  331. if (value > 32767)
  332. value = 32767;
  333. *out_ptr++ = value;
  334. *out_ptr++ = value >> 8;
  335. echo_buf[echo_head++] = value;
  336. if (echo_head >= N_ECHO_BUF)
  337. echo_head = 0;
  338. sample_count++;
  339. if (out_ptr >= out_end)
  340. return 1;
  341. }
  342. return 0;
  343. }
  344. void KlattReset(int control)
  345. {
  346. int r_ix;
  347. if (control == 2) {
  348. // Full reset
  349. kt_globals.FLPhz = (950 * kt_globals.samrate) / 10000;
  350. kt_globals.BLPhz = (630 * kt_globals.samrate) / 10000;
  351. kt_globals.minus_pi_t = -PI / kt_globals.samrate;
  352. kt_globals.two_pi_t = -2.0 * kt_globals.minus_pi_t;
  353. setabc(kt_globals.FLPhz, kt_globals.BLPhz, &(kt_globals.rsn[RLP]));
  354. }
  355. if (control > 0) {
  356. kt_globals.nper = 0;
  357. kt_globals.T0 = 0;
  358. kt_globals.nopen = 0;
  359. kt_globals.nmod = 0;
  360. for (r_ix = RGL; r_ix < N_RSN; r_ix++) {
  361. kt_globals.rsn[r_ix].p1 = 0;
  362. kt_globals.rsn[r_ix].p2 = 0;
  363. }
  364. }
  365. for (r_ix = 0; r_ix <= R6p; r_ix++) {
  366. kt_globals.rsn[r_ix].p1 = 0;
  367. kt_globals.rsn[r_ix].p2 = 0;
  368. }
  369. }
  370. /*
  371. function FRAME_INIT
  372. Use parameters from the input frame to set up resonator coefficients.
  373. */
  374. static void frame_init(klatt_frame_ptr frame)
  375. {
  376. double amp_par[7];
  377. static double amp_par_factor[7] = { 0.6, 0.4, 0.15, 0.06, 0.04, 0.022, 0.03 };
  378. long Gain0_tmp;
  379. int ix;
  380. kt_globals.original_f0 = frame->F0hz10 / 10;
  381. frame->AVdb_tmp = frame->AVdb - 7;
  382. if (frame->AVdb_tmp < 0)
  383. frame->AVdb_tmp = 0;
  384. kt_globals.amp_aspir = DBtoLIN(frame->ASP) * 0.05;
  385. kt_globals.amp_frica = DBtoLIN(frame->AF) * 0.25;
  386. kt_globals.par_amp_voice = DBtoLIN(frame->AVpdb);
  387. kt_globals.amp_bypas = DBtoLIN(frame->AB) * 0.05;
  388. for (ix = 0; ix <= 6; ix++) {
  389. // parallel amplitudes F1 to F6, and parallel nasal pole
  390. amp_par[ix] = DBtoLIN(frame->Ap[ix]) * amp_par_factor[ix];
  391. }
  392. Gain0_tmp = frame->Gain0 - 3;
  393. if (Gain0_tmp <= 0)
  394. Gain0_tmp = 57;
  395. kt_globals.amp_gain0 = DBtoLIN(Gain0_tmp) / kt_globals.scale_wav;
  396. // Set coefficients of variable cascade resonators
  397. for (ix = 1; ix <= 9; ix++) {
  398. // formants 1 to 8, plus nasal pole
  399. setabc(frame->Fhz[ix], frame->Bhz[ix], &(kt_globals.rsn[ix]));
  400. if (ix <= 5) {
  401. setabc(frame->Fhz_next[ix], frame->Bhz_next[ix], &(kt_globals.rsn_next[ix]));
  402. kt_globals.rsn[ix].a_inc = (kt_globals.rsn_next[ix].a - kt_globals.rsn[ix].a) / 64.0;
  403. kt_globals.rsn[ix].b_inc = (kt_globals.rsn_next[ix].b - kt_globals.rsn[ix].b) / 64.0;
  404. kt_globals.rsn[ix].c_inc = (kt_globals.rsn_next[ix].c - kt_globals.rsn[ix].c) / 64.0;
  405. }
  406. }
  407. // nasal zero anti-resonator
  408. setzeroabc(frame->Fhz[F_NZ], frame->Bhz[F_NZ], &(kt_globals.rsn[Rnz]));
  409. setzeroabc(frame->Fhz_next[F_NZ], frame->Bhz_next[F_NZ], &(kt_globals.rsn_next[Rnz]));
  410. kt_globals.rsn[F_NZ].a_inc = (kt_globals.rsn_next[F_NZ].a - kt_globals.rsn[F_NZ].a) / 64.0;
  411. kt_globals.rsn[F_NZ].b_inc = (kt_globals.rsn_next[F_NZ].b - kt_globals.rsn[F_NZ].b) / 64.0;
  412. kt_globals.rsn[F_NZ].c_inc = (kt_globals.rsn_next[F_NZ].c - kt_globals.rsn[F_NZ].c) / 64.0;
  413. // Set coefficients of parallel resonators, and amplitude of outputs
  414. for (ix = 0; ix <= 6; ix++) {
  415. setabc(frame->Fhz[ix], frame->Bphz[ix], &(kt_globals.rsn[Rparallel+ix]));
  416. kt_globals.rsn[Rparallel+ix].a *= amp_par[ix];
  417. }
  418. // output low-pass filter
  419. setabc((long)0.0, (long)(kt_globals.samrate/2), &(kt_globals.rsn[Rout]));
  420. }
  421. /*
  422. function IMPULSIVE_SOURCE
  423. Generate a low pass filtered train of impulses as an approximation of
  424. a natural excitation waveform. Low-pass filter the differentiated impulse
  425. with a critically-damped second-order filter, time constant proportional
  426. to Kopen.
  427. */
  428. static double impulsive_source()
  429. {
  430. static double doublet[] = { 0.0, 13000000.0, -13000000.0 };
  431. static double vwave;
  432. if (kt_globals.nper < 3)
  433. vwave = doublet[kt_globals.nper];
  434. else
  435. vwave = 0.0;
  436. return resonator(&(kt_globals.rsn[RGL]), vwave);
  437. }
  438. /*
  439. function NATURAL_SOURCE
  440. Vwave is the differentiated glottal flow waveform, there is a weak
  441. spectral zero around 800 Hz, magic constants a,b reset pitch synchronously.
  442. */
  443. static double natural_source()
  444. {
  445. static double vwave;
  446. if (kt_globals.nper < kt_globals.nopen) {
  447. kt_globals.pulse_shape_a -= kt_globals.pulse_shape_b;
  448. vwave += kt_globals.pulse_shape_a;
  449. double lgtemp = vwave * 0.028;
  450. return lgtemp;
  451. }
  452. vwave = 0.0;
  453. return 0.0;
  454. }
  455. /*
  456. function PITCH_SYNC_PAR_RESET
  457. Reset selected parameters pitch-synchronously.
  458. Constant B0 controls shape of glottal pulse as a function
  459. of desired duration of open phase N0
  460. (Note that N0 is specified in terms of 40,000 samples/sec of speech)
  461. Assume voicing waveform V(t) has form: k1 t**2 - k2 t**3
  462. If the radiation characterivative, a temporal derivative
  463. is folded in, and we go from continuous time to discrete
  464. integers n: dV/dt = vwave[n]
  465. = sum over i=1,2,...,n of { a - (i * b) }
  466. = a n - b/2 n**2
  467. where the constants a and b control the detailed shape
  468. and amplitude of the voicing waveform over the open
  469. potion of the voicing cycle "nopen".
  470. Let integral of dV/dt have no net dc flow --> a = (b * nopen) / 3
  471. Let maximum of dUg(n)/dn be constant --> b = gain / (nopen * nopen)
  472. meaning as nopen gets bigger, V has bigger peak proportional to n
  473. Thus, to generate the table below for 40 <= nopen <= 263:
  474. B0[nopen - 40] = 1920000 / (nopen * nopen)
  475. */
  476. static void pitch_synch_par_reset(klatt_frame_ptr frame)
  477. {
  478. long temp;
  479. double temp1;
  480. static long skew;
  481. static short B0[224] = {
  482. 1200, 1142, 1088, 1038, 991, 948, 907, 869, 833, 799, 768, 738, 710, 683, 658,
  483. 634, 612, 590, 570, 551, 533, 515, 499, 483, 468, 454, 440, 427, 415, 403,
  484. 391, 380, 370, 360, 350, 341, 332, 323, 315, 307, 300, 292, 285, 278, 272,
  485. 265, 259, 253, 247, 242, 237, 231, 226, 221, 217, 212, 208, 204, 199, 195,
  486. 192, 188, 184, 180, 177, 174, 170, 167, 164, 161, 158, 155, 153, 150, 147,
  487. 145, 142, 140, 137, 135, 133, 131, 128, 126, 124, 122, 120, 119, 117, 115,
  488. 113, 111, 110, 108, 106, 105, 103, 102, 100, 99, 97, 96, 95, 93, 92, 91, 90,
  489. 88, 87, 86, 85, 84, 83, 82, 80, 79, 78, 77, 76, 75, 75, 74, 73, 72, 71,
  490. 70, 69, 68, 68, 67, 66, 65, 64, 64, 63, 62, 61, 61, 60, 59, 59, 58, 57,
  491. 57, 56, 56, 55, 55, 54, 54, 53, 53, 52, 52, 51, 51, 50, 50, 49, 49, 48, 48,
  492. 47, 47, 46, 46, 45, 45, 44, 44, 43, 43, 42, 42, 41, 41, 41, 41, 40, 40,
  493. 39, 39, 38, 38, 38, 38, 37, 37, 36, 36, 36, 36, 35, 35, 35, 35, 34, 34, 33,
  494. 33, 33, 33, 32, 32, 32, 32, 31, 31, 31, 31, 30, 30, 30, 30, 29, 29, 29, 29,
  495. 28, 28, 28, 28, 27, 27
  496. };
  497. if (frame->F0hz10 > 0) {
  498. // T0 is 4* the number of samples in one pitch period
  499. kt_globals.T0 = (40 * kt_globals.samrate) / frame->F0hz10;
  500. kt_globals.amp_voice = DBtoLIN(frame->AVdb_tmp);
  501. // Duration of period before amplitude modulation
  502. kt_globals.nmod = kt_globals.T0;
  503. if (frame->AVdb_tmp > 0)
  504. kt_globals.nmod >>= 1;
  505. // Breathiness of voicing waveform
  506. kt_globals.amp_breth = DBtoLIN(frame->Aturb) * 0.1;
  507. // Set open phase of glottal period where 40 <= open phase <= 263
  508. kt_globals.nopen = 4 * frame->Kopen;
  509. if ((kt_globals.glsource == IMPULSIVE) && (kt_globals.nopen > 263))
  510. kt_globals.nopen = 263;
  511. if (kt_globals.nopen >= (kt_globals.T0-1))
  512. kt_globals.nopen = kt_globals.T0 - 2;
  513. if (kt_globals.nopen < 40) {
  514. // F0 max = 1000 Hz
  515. kt_globals.nopen = 40;
  516. }
  517. // Reset a & b, which determine shape of "natural" glottal waveform
  518. kt_globals.pulse_shape_b = B0[kt_globals.nopen-40];
  519. kt_globals.pulse_shape_a = (kt_globals.pulse_shape_b * kt_globals.nopen) * 0.333;
  520. // Reset width of "impulsive" glottal pulse
  521. temp = kt_globals.samrate / kt_globals.nopen;
  522. setabc((long)0, temp, &(kt_globals.rsn[RGL]));
  523. // Make gain at F1 about constant
  524. temp1 = kt_globals.nopen *.00833;
  525. kt_globals.rsn[RGL].a *= temp1 * temp1;
  526. // Truncate skewness so as not to exceed duration of closed phase
  527. // of glottal period.
  528. temp = kt_globals.T0 - kt_globals.nopen;
  529. if (frame->Kskew > temp)
  530. frame->Kskew = temp;
  531. if (skew >= 0)
  532. skew = frame->Kskew;
  533. else
  534. skew = -frame->Kskew;
  535. // Add skewness to closed portion of voicing period
  536. kt_globals.T0 = kt_globals.T0 + skew;
  537. skew = -skew;
  538. } else {
  539. kt_globals.T0 = 4; // Default for f0 undefined
  540. kt_globals.amp_voice = 0.0;
  541. kt_globals.nmod = kt_globals.T0;
  542. kt_globals.amp_breth = 0.0;
  543. kt_globals.pulse_shape_a = 0.0;
  544. kt_globals.pulse_shape_b = 0.0;
  545. }
  546. // Reset these pars pitch synchronously or at update rate if f0=0
  547. if ((kt_globals.T0 != 4) || (kt_globals.ns == 0)) {
  548. // Set one-pole low-pass filter that tilts glottal source
  549. kt_globals.decay = (0.033 * frame->TLTdb);
  550. if (kt_globals.decay > 0.0)
  551. kt_globals.onemd = 1.0 - kt_globals.decay;
  552. else
  553. kt_globals.onemd = 1.0;
  554. }
  555. }
  556. /*
  557. function SETABC
  558. Convert formant freqencies and bandwidth into resonator difference
  559. equation constants.
  560. */
  561. static void setabc(long int f, long int bw, resonator_ptr rp)
  562. {
  563. // Let r = exp(-pi bw t)
  564. double arg = kt_globals.minus_pi_t * bw;
  565. double r = exp(arg);
  566. // Let c = -r**2
  567. rp->c = -(r * r);
  568. // Let b = r * 2*cos(2 pi f t)
  569. arg = kt_globals.two_pi_t * f;
  570. rp->b = r * cos(arg) * 2.0;
  571. // Let a = 1.0 - b - c
  572. rp->a = 1.0 - rp->b - rp->c;
  573. }
  574. /*
  575. function SETZEROABC
  576. Convert formant freqencies and bandwidth into anti-resonator difference
  577. equation constants.
  578. */
  579. static void setzeroabc(long int f, long int bw, resonator_ptr rp)
  580. {
  581. f = -f;
  582. // First compute ordinary resonator coefficients
  583. // Let r = exp(-pi bw t)
  584. double arg = kt_globals.minus_pi_t * bw;
  585. double r = exp(arg);
  586. // Let c = -r**2
  587. rp->c = -(r * r);
  588. // Let b = r * 2*cos(2 pi f t)
  589. arg = kt_globals.two_pi_t * f;
  590. rp->b = r * cos(arg) * 2.;
  591. // Let a = 1.0 - b - c
  592. rp->a = 1.0 - rp->b - rp->c;
  593. // Now convert to antiresonator coefficients (a'=1/a, b'=b/a, c'=c/a)
  594. // If f == 0 then rp->a gets set to 0 which makes a'=1/a set a', b' and c' to
  595. // INF, causing an audible sound spike when triggered (e.g. apiration with the
  596. // nasal register set to f=0, bw=0).
  597. if (rp->a != 0) {
  598. // Now convert to antiresonator coefficients (a'=1/a, b'=b/a, c'=c/a)
  599. rp->a = 1.0 / rp->a;
  600. rp->c *= -rp->a;
  601. rp->b *= -rp->a;
  602. }
  603. }
  604. /*
  605. function GEN_NOISE
  606. Random number generator (return a number between -8191 and +8191)
  607. Noise spectrum is tilted down by soft low-pass filter having a pole near
  608. the origin in the z-plane, i.e. output = input + (0.75 * lastoutput)
  609. */
  610. static double gen_noise(double noise)
  611. {
  612. static double nlast;
  613. long temp = (long)getrandom(-8191, 8191);
  614. kt_globals.nrand = (long)temp;
  615. noise = kt_globals.nrand + (0.75 * nlast);
  616. nlast = noise;
  617. return noise;
  618. }
  619. /*
  620. function DBTOLIN
  621. Convert from decibels to a linear scale factor
  622. Conversion table, db to linear, 87 dB --> 32767
  623. 86 dB --> 29491 (1 dB down = 0.5**1/6)
  624. ...
  625. 81 dB --> 16384 (6 dB down = 0.5)
  626. ...
  627. 0 dB --> 0
  628. The just noticeable difference for a change in intensity of a vowel
  629. is approximately 1 dB. Thus all amplitudes are quantized to 1 dB
  630. steps.
  631. */
  632. static double DBtoLIN(long dB)
  633. {
  634. static short amptable[88] = {
  635. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 7,
  636. 8, 9, 10, 11, 13, 14, 16, 18, 20, 22, 25, 28, 32,
  637. 35, 40, 45, 51, 57, 64, 71, 80, 90, 101, 114, 128,
  638. 142, 159, 179, 202, 227, 256, 284, 318, 359, 405,
  639. 455, 512, 568, 638, 719, 881, 911, 1024, 1137, 1276,
  640. 1438, 1622, 1823, 2048, 2273, 2552, 2875, 3244, 3645,
  641. 4096, 4547, 5104, 5751, 6488, 7291, 8192, 9093, 10207,
  642. 11502, 12976, 14582, 16384, 18350, 20644, 23429,
  643. 26214, 29491, 32767
  644. };
  645. if ((dB < 0) || (dB > 87))
  646. return 0;
  647. return (double)(amptable[dB]) * 0.001;
  648. }
  649. extern voice_t *wvoice;
  650. static klatt_peaks_t peaks[N_PEAKS];
  651. static int end_wave;
  652. static int klattp[N_KLATTP];
  653. static double klattp1[N_KLATTP];
  654. static double klattp_inc[N_KLATTP];
  655. int Wavegen_Klatt(int resume)
  656. {
  657. int pk;
  658. int x;
  659. int ix;
  660. int fade;
  661. if (resume == 0)
  662. sample_count = 0;
  663. while (sample_count < nsamples) {
  664. kt_frame.F0hz10 = (wdata.pitch * 10) / 4096;
  665. // formants F6,F7,F8 are fixed values for cascade resonators, set in KlattInit()
  666. // but F6 is used for parallel resonator
  667. // F0 is used for the nasal zero
  668. for (ix = 0; ix < 6; ix++) {
  669. kt_frame.Fhz[ix] = peaks[ix].freq;
  670. if (ix < 4)
  671. kt_frame.Bhz[ix] = peaks[ix].bw;
  672. }
  673. for (ix = 1; ix < 7; ix++)
  674. kt_frame.Ap[ix] = peaks[ix].ap;
  675. kt_frame.AVdb = klattp[KLATT_AV];
  676. kt_frame.AVpdb = klattp[KLATT_AVp];
  677. kt_frame.AF = klattp[KLATT_Fric];
  678. kt_frame.AB = klattp[KLATT_FricBP];
  679. kt_frame.ASP = klattp[KLATT_Aspr];
  680. kt_frame.Aturb = klattp[KLATT_Turb];
  681. kt_frame.Kskew = klattp[KLATT_Skew];
  682. kt_frame.TLTdb = klattp[KLATT_Tilt];
  683. kt_frame.Kopen = klattp[KLATT_Kopen];
  684. // advance formants
  685. for (pk = 0; pk < N_PEAKS; pk++) {
  686. peaks[pk].freq1 += peaks[pk].freq_inc;
  687. peaks[pk].freq = (int)peaks[pk].freq1;
  688. peaks[pk].bw1 += peaks[pk].bw_inc;
  689. peaks[pk].bw = (int)peaks[pk].bw1;
  690. peaks[pk].bp1 += peaks[pk].bp_inc;
  691. peaks[pk].bp = (int)peaks[pk].bp1;
  692. peaks[pk].ap1 += peaks[pk].ap_inc;
  693. peaks[pk].ap = (int)peaks[pk].ap1;
  694. }
  695. // advance other parameters
  696. for (ix = 0; ix < N_KLATTP; ix++) {
  697. klattp1[ix] += klattp_inc[ix];
  698. klattp[ix] = (int)klattp1[ix];
  699. }
  700. for (ix = 0; ix <= 6; ix++) {
  701. kt_frame.Fhz_next[ix] = peaks[ix].freq;
  702. if (ix < 4)
  703. kt_frame.Bhz_next[ix] = peaks[ix].bw;
  704. }
  705. // advance the pitch
  706. wdata.pitch_ix += wdata.pitch_inc;
  707. if ((ix = wdata.pitch_ix>>8) > 127) ix = 127;
  708. x = wdata.pitch_env[ix] * wdata.pitch_range;
  709. wdata.pitch = (x>>8) + wdata.pitch_base;
  710. kt_globals.nspfr = (nsamples - sample_count);
  711. if (kt_globals.nspfr > STEPSIZE)
  712. kt_globals.nspfr = STEPSIZE;
  713. frame_init(&kt_frame); // get parameters for next frame of speech
  714. if (parwave(&kt_frame) == 1)
  715. return 1; // output buffer is full
  716. }
  717. if (end_wave > 0) {
  718. fade = 64; // not followed by formant synthesis
  719. // fade out to avoid a click
  720. kt_globals.fadeout = fade;
  721. end_wave = 0;
  722. sample_count -= fade;
  723. kt_globals.nspfr = fade;
  724. if (parwave(&kt_frame) == 1)
  725. return 1; // output buffer is full
  726. }
  727. return 0;
  728. }
  729. void SetSynth_Klatt(int length, int modn, frame_t *fr1, frame_t *fr2, voice_t *v, int control)
  730. {
  731. int ix;
  732. DOUBLEX next;
  733. int qix;
  734. int cmd;
  735. frame_t *fr3;
  736. static frame_t prev_fr;
  737. if (wvoice != NULL) {
  738. if ((wvoice->klattv[0] > 0) && (wvoice->klattv[0] <= 4 )) {
  739. kt_globals.glsource = wvoice->klattv[0];
  740. kt_globals.scale_wav = scale_wav_tab[kt_globals.glsource];
  741. }
  742. kt_globals.f0_flutter = wvoice->flutter/32;
  743. }
  744. end_wave = 0;
  745. if (control & 2)
  746. end_wave = 1; // fadeout at the end
  747. if (control & 1) {
  748. end_wave = 1;
  749. for (qix = wcmdq_head+1;; qix++) {
  750. if (qix >= N_WCMDQ) qix = 0;
  751. if (qix == wcmdq_tail) break;
  752. cmd = wcmdq[qix][0];
  753. if (cmd == WCMD_KLATT) {
  754. end_wave = 0; // next wave generation is from another spectrum
  755. fr3 = (frame_t *)wcmdq[qix][2];
  756. for (ix = 1; ix < 6; ix++) {
  757. if (fr3->ffreq[ix] != fr2->ffreq[ix]) {
  758. // there is a discontinuity in formants
  759. end_wave = 2;
  760. break;
  761. }
  762. }
  763. break;
  764. }
  765. if ((cmd == WCMD_WAVE) || (cmd == WCMD_PAUSE))
  766. break; // next is not from spectrum, so continue until end of wave cycle
  767. }
  768. }
  769. if (control & 1) {
  770. for (ix = 1; ix < 6; ix++) {
  771. if (prev_fr.ffreq[ix] != fr1->ffreq[ix]) {
  772. // Discontinuity in formants.
  773. // end_wave was set in SetSynth_Klatt() to fade out the previous frame
  774. KlattReset(0);
  775. break;
  776. }
  777. }
  778. memcpy(&prev_fr, fr2, sizeof(prev_fr));
  779. }
  780. for (ix = 0; ix < N_KLATTP; ix++) {
  781. if ((ix >= 5) && ((fr1->frflags & FRFLAG_KLATT) == 0)) {
  782. klattp1[ix] = klattp[ix] = 0;
  783. klattp_inc[ix] = 0;
  784. } else {
  785. klattp1[ix] = klattp[ix] = fr1->klattp[ix];
  786. klattp_inc[ix] = (double)((fr2->klattp[ix] - klattp[ix]) * STEPSIZE)/length;
  787. }
  788. }
  789. nsamples = length;
  790. for (ix = 1; ix < 6; ix++) {
  791. peaks[ix].freq1 = (fr1->ffreq[ix] * v->freq[ix] / 256.0) + v->freqadd[ix];
  792. peaks[ix].freq = (int)peaks[ix].freq1;
  793. next = (fr2->ffreq[ix] * v->freq[ix] / 256.0) + v->freqadd[ix];
  794. peaks[ix].freq_inc = ((next - peaks[ix].freq1) * STEPSIZE) / length;
  795. if (ix < 4) {
  796. // klatt bandwidth for f1, f2, f3 (others are fixed)
  797. peaks[ix].bw1 = fr1->bw[ix] * 2;
  798. peaks[ix].bw = (int)peaks[ix].bw1;
  799. next = fr2->bw[ix] * 2;
  800. peaks[ix].bw_inc = ((next - peaks[ix].bw1) * STEPSIZE) / length;
  801. }
  802. }
  803. // nasal zero frequency
  804. peaks[0].freq1 = fr1->klattp[KLATT_FNZ] * 2;
  805. if (peaks[0].freq1 == 0)
  806. peaks[0].freq1 = kt_frame.Fhz[F_NP]; // if no nasal zero, set it to same freq as nasal pole
  807. peaks[0].freq = (int)peaks[0].freq1;
  808. next = fr2->klattp[KLATT_FNZ] * 2;
  809. if (next == 0)
  810. next = kt_frame.Fhz[F_NP];
  811. peaks[0].freq_inc = ((next - peaks[0].freq1) * STEPSIZE) / length;
  812. peaks[0].bw1 = 89;
  813. peaks[0].bw = 89;
  814. peaks[0].bw_inc = 0;
  815. if (fr1->frflags & FRFLAG_KLATT) {
  816. // the frame contains additional parameters for parallel resonators
  817. for (ix = 1; ix < 7; ix++) {
  818. peaks[ix].bp1 = fr1->klatt_bp[ix] * 4; // parallel bandwidth
  819. peaks[ix].bp = (int)peaks[ix].bp1;
  820. next = fr2->klatt_bp[ix] * 4;
  821. peaks[ix].bp_inc = ((next - peaks[ix].bp1) * STEPSIZE) / length;
  822. peaks[ix].ap1 = fr1->klatt_ap[ix]; // parallal amplitude
  823. peaks[ix].ap = (int)peaks[ix].ap1;
  824. next = fr2->klatt_ap[ix];
  825. peaks[ix].ap_inc = ((next - peaks[ix].ap1) * STEPSIZE) / length;
  826. }
  827. }
  828. }
  829. int Wavegen_Klatt2(int length, int modulation, int resume, frame_t *fr1, frame_t *fr2)
  830. {
  831. if (resume == 0)
  832. SetSynth_Klatt(length, modulation, fr1, fr2, wvoice, 1);
  833. return Wavegen_Klatt(resume);
  834. }
  835. void KlattInit()
  836. {
  837. static short formant_hz[10] = { 280, 688, 1064, 2806, 3260, 3700, 6500, 7000, 8000, 280 };
  838. static short bandwidth[10] = { 89, 160, 70, 160, 200, 200, 500, 500, 500, 89 };
  839. static short parallel_amp[10] = { 0, 59, 59, 59, 59, 59, 59, 0, 0, 0 };
  840. static short parallel_bw[10] = { 59, 59, 89, 149, 200, 200, 500, 0, 0, 0 };
  841. sample_count = 0;
  842. kt_globals.synthesis_model = CASCADE_PARALLEL;
  843. kt_globals.samrate = 22050;
  844. kt_globals.glsource = IMPULSIVE;
  845. kt_globals.scale_wav = scale_wav_tab[kt_globals.glsource];
  846. kt_globals.natural_samples = natural_samples;
  847. kt_globals.num_samples = NUMBER_OF_SAMPLES;
  848. kt_globals.sample_factor = 3.0;
  849. kt_globals.nspfr = (kt_globals.samrate * 10) / 1000;
  850. kt_globals.outsl = 0;
  851. kt_globals.f0_flutter = 20;
  852. KlattReset(2);
  853. // set default values for frame parameters
  854. for (int ix = 0; ix <= 9; ix++) {
  855. kt_frame.Fhz[ix] = formant_hz[ix];
  856. kt_frame.Bhz[ix] = bandwidth[ix];
  857. kt_frame.Ap[ix] = parallel_amp[ix];
  858. kt_frame.Bphz[ix] = parallel_bw[ix];
  859. }
  860. kt_frame.Bhz_next[F_NZ] = bandwidth[F_NZ];
  861. kt_frame.F0hz10 = 1000;
  862. kt_frame.AVdb = 59;
  863. kt_frame.ASP = 0;
  864. kt_frame.Kopen = 40;
  865. kt_frame.Aturb = 0;
  866. kt_frame.TLTdb = 0;
  867. kt_frame.AF = 50;
  868. kt_frame.Kskew = 0;
  869. kt_frame.AB = 0;
  870. kt_frame.AVpdb = 0;
  871. kt_frame.Gain0 = 62;
  872. }