/* * Copyright (C) 2008 by Jonathan Duddington * email: jonsd@users.sourceforge.net * Copyright (C) 2013-2015 Reece H. Dunn * * Based on a re-implementation by: * (c) 1993,94 Jon Iles and Nick Ing-Simmons * of the Klatt cascade-parallel formant synthesizer * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see: . */ // See URL: ftp://svr-ftp.eng.cam.ac.uk/pub/comp.speech/synthesis/klatt.3.04.tar.gz #include "config.h" #include #include #include #include #if HAVE_STDINT_H #include #endif #include "speak_lib.h" #include "speech.h" #include "klatt.h" #include "phoneme.h" #include "synthesize.h" #include "voice.h" extern unsigned char *out_ptr; extern unsigned char *out_start; extern unsigned char *out_end; extern WGEN_DATA wdata; static int nsamples; static int sample_count; #ifdef _MSC_VER #define getrandom(min, max) ((rand()%(int)(((max)+1)-(min)))+(min)) #else #define getrandom(min, max) ((rand()%(long)(((max)+1)-(min)))+(min)) #endif // function prototypes for functions private to this file static void flutter(klatt_frame_ptr); static double sampled_source(int); static double impulsive_source(void); static double natural_source(void); static void pitch_synch_par_reset(klatt_frame_ptr); static double gen_noise(double); static double DBtoLIN(long); static void frame_init(klatt_frame_ptr); static void setabc(long, long, resonator_ptr); static void setzeroabc(long, long, resonator_ptr); static klatt_frame_t kt_frame; static klatt_global_t kt_globals; #define NUMBER_OF_SAMPLES 100 static int scale_wav_tab[] = { 45, 38, 45, 45, 55 }; // scale output from different voicing sources // For testing, this can be overwritten in KlattInit() static short natural_samples2[256] = { 2583, 2516, 2450, 2384, 2319, 2254, 2191, 2127, 2067, 2005, 1946, 1890, 1832, 1779, 1726, 1675, 1626, 1579, 1533, 1491, 1449, 1409, 1372, 1336, 1302, 1271, 1239, 1211, 1184, 1158, 1134, 1111, 1089, 1069, 1049, 1031, 1013, 996, 980, 965, 950, 936, 921, 909, 895, 881, 869, 855, 843, 830, 818, 804, 792, 779, 766, 754, 740, 728, 715, 702, 689, 676, 663, 651, 637, 626, 612, 601, 588, 576, 564, 552, 540, 530, 517, 507, 496, 485, 475, 464, 454, 443, 434, 424, 414, 404, 394, 385, 375, 366, 355, 347, 336, 328, 317, 308, 299, 288, 280, 269, 260, 250, 240, 231, 220, 212, 200, 192, 181, 172, 161, 152, 142, 133, 123, 113, 105, 94, 86, 76, 67, 57, 49, 39, 30, 22, 11, 4, -5, -14, -23, -32, -41, -50, -60, -69, -78, -87, -96, -107, -115, -126, -134, -144, -154, -164, -174, -183, -193, -203, -213, -222, -233, -242, -252, -262, -271, -281, -291, -301, -310, -320, -330, -339, -349, -357, -368, -377, -387, -397, -406, -417, -426, -436, -446, -456, -467, -477, -487, -499, -509, -521, -532, -543, -555, -567, -579, -591, -603, -616, -628, -641, -653, -666, -679, -692, -705, -717, -732, -743, -758, -769, -783, -795, -808, -820, -834, -845, -860, -872, -885, -898, -911, -926, -939, -955, -968, -986, -999, -1018, -1034, -1054, -1072, -1094, -1115, -1138, -1162, -1188, -1215, -1244, -1274, -1307, -1340, -1377, -1415, -1453, -1496, -1538, -1584, -1631, -1680, -1732, -1783, -1839, -1894, -1952, -2010, -2072, -2133, -2196, -2260, -2325, -2390, -2456, -2522, -2589, }; static short natural_samples[100] = { -310, -400, 530, 356, 224, 89, 23, -10, -58, -16, 461, 599, 536, 701, 770, 605, 497, 461, 560, 404, 110, 224, 131, 104, -97, 155, 278, -154, -1165, -598, 737, 125, -592, 41, 11, -247, -10, 65, 92, 80, -304, 71, 167, -1, 122, 233, 161, -43, 278, 479, 485, 407, 266, 650, 134, 80, 236, 68, 260, 269, 179, 53, 140, 275, 293, 296, 104, 257, 152, 311, 182, 263, 245, 125, 314, 140, 44, 203, 230, -235, -286, 23, 107, 92, -91, 38, 464, 443, 176, 98, -784, -2449, -1891, -1045, -1600, -1462, -1384, -1261, -949, -730 }; /* function RESONATOR This is a generic resonator function. Internal memory for the resonator is stored in the globals structure. */ static double resonator(resonator_ptr r, double input) { double x = (double)((double)r->a * (double)input + (double)r->b * (double)r->p1 + (double)r->c * (double)r->p2); r->p2 = (double)r->p1; r->p1 = (double)x; return (double)x; } static double resonator2(resonator_ptr r, double input) { double x = (double)((double)r->a * (double)input + (double)r->b * (double)r->p1 + (double)r->c * (double)r->p2); r->p2 = (double)r->p1; r->p1 = (double)x; r->a += r->a_inc; r->b += r->b_inc; r->c += r->c_inc; return (double)x; } static double antiresonator2(resonator_ptr r, double input) { register double x = (double)r->a * (double)input + (double)r->b * (double)r->p1 + (double)r->c * (double)r->p2; r->p2 = (double)r->p1; r->p1 = (double)input; r->a += r->a_inc; r->b += r->b_inc; r->c += r->c_inc; return (double)x; } /* function FLUTTER This function adds F0 flutter, as specified in: "Analysis, synthesis and perception of voice quality variations among female and male talkers" D.H. Klatt and L.C. Klatt JASA 87(2) February 1990. Flutter is added by applying a quasi-random element constructed from three slowly varying sine waves. */ static void flutter(klatt_frame_ptr frame) { static int time_count; double fla = (double)kt_globals.f0_flutter / 50; double flb = (double)kt_globals.original_f0 / 100; double flc = sin(PI*12.7*time_count); // because we are calling flutter() more frequently, every 2.9mS double fld = sin(PI*7.1*time_count); double fle = sin(PI*4.7*time_count); double delta_f0 = fla * flb * (flc + fld + fle) * 10; frame->F0hz10 = frame->F0hz10 + (long)delta_f0; time_count++; } /* function SAMPLED_SOURCE Allows the use of a glottal excitation waveform sampled from a real voice. */ static double sampled_source(int source_num) { double result; short *samples; if (source_num == 0) { samples = natural_samples; kt_globals.num_samples = 100; } else { samples = natural_samples2; kt_globals.num_samples = 256; } if (kt_globals.T0 != 0) { double ftemp = (double)kt_globals.nper; ftemp = ftemp / kt_globals.T0; ftemp = ftemp * kt_globals.num_samples; int itemp = (int)ftemp; double temp_diff = ftemp - (double)itemp; int current_value = samples[itemp]; int next_value = samples[itemp+1]; double diff_value = (double)next_value - (double)current_value; diff_value = diff_value * temp_diff; result = samples[itemp] + diff_value; result = result * kt_globals.sample_factor; } else result = 0; return result; } /* function PARWAVE Converts synthesis parameters to a waveform. */ static int parwave(klatt_frame_ptr frame) { double temp; int value; double outbypas; double out; long n4; double frics; double glotout; double aspiration; double casc_next_in; double par_glotout; static double noise; static double voice; static double vlast; static double glotlast; static double sourc; int ix; flutter(frame); // add f0 flutter // MAIN LOOP, for each output sample of current frame: for (kt_globals.ns = 0; kt_globals.ns < kt_globals.nspfr; kt_globals.ns++) { // Get low-passed random number for aspiration and frication noise noise = gen_noise(noise); // Amplitude modulate noise (reduce noise amplitude during // second half of glottal period) if voicing simultaneously present. if (kt_globals.nper > kt_globals.nmod) noise *= (double)0.5; // Compute frication noise frics = kt_globals.amp_frica * noise; // Compute voicing waveform. Run glottal source simulation at 4 // times normal sample rate to minimize quantization noise in // period of female voice. for (n4 = 0; n4 < 4; n4++) { switch (kt_globals.glsource) { case IMPULSIVE: voice = impulsive_source(); break; case NATURAL: voice = natural_source(); break; case SAMPLED: voice = sampled_source(0); break; case SAMPLED2: voice = sampled_source(1); break; } // Reset period when counter 'nper' reaches T0 if (kt_globals.nper >= kt_globals.T0) { kt_globals.nper = 0; pitch_synch_par_reset(frame); } // Low-pass filter voicing waveform before downsampling from 4*samrate // to samrate samples/sec. Resonator f=.09*samrate, bw=.06*samrate voice = resonator(&(kt_globals.rsn[RLP]), voice); // Increment counter that keeps track of 4*samrate samples per sec kt_globals.nper++; } // Tilt spectrum of voicing source down by soft low-pass filtering, amount // of tilt determined by TLTdb voice = (voice * kt_globals.onemd) + (vlast * kt_globals.decay); vlast = voice; // Add breathiness during glottal open phase. Amount of breathiness // determined by parameter Aturb Use nrand rather than noise because // noise is low-passed. if (kt_globals.nper < kt_globals.nopen) voice += kt_globals.amp_breth * kt_globals.nrand; // Set amplitude of voicing glotout = kt_globals.amp_voice * voice; par_glotout = kt_globals.par_amp_voice * voice; // Compute aspiration amplitude and add to voicing source aspiration = kt_globals.amp_aspir * noise; glotout += aspiration; par_glotout += aspiration; // Cascade vocal tract, excited by laryngeal sources. // Nasal antiresonator, then formants FNP, F5, F4, F3, F2, F1 out = 0; if (kt_globals.synthesis_model != ALL_PARALLEL) { casc_next_in = antiresonator2(&(kt_globals.rsn[Rnz]), glotout); casc_next_in = resonator(&(kt_globals.rsn[Rnpc]), casc_next_in); casc_next_in = resonator(&(kt_globals.rsn[R8c]), casc_next_in); casc_next_in = resonator(&(kt_globals.rsn[R7c]), casc_next_in); casc_next_in = resonator(&(kt_globals.rsn[R6c]), casc_next_in); casc_next_in = resonator2(&(kt_globals.rsn[R5c]), casc_next_in); casc_next_in = resonator2(&(kt_globals.rsn[R4c]), casc_next_in); casc_next_in = resonator2(&(kt_globals.rsn[R3c]), casc_next_in); casc_next_in = resonator2(&(kt_globals.rsn[R2c]), casc_next_in); out = resonator2(&(kt_globals.rsn[R1c]), casc_next_in); } // Excite parallel F1 and FNP by voicing waveform sourc = par_glotout; // Source is voicing plus aspiration // Standard parallel vocal tract Formants F6,F5,F4,F3,F2, // outputs added with alternating sign. Sound source for other // parallel resonators is frication plus first difference of // voicing waveform. out += resonator(&(kt_globals.rsn[R1p]), sourc); out += resonator(&(kt_globals.rsn[Rnpp]), sourc); sourc = frics + par_glotout - glotlast; glotlast = par_glotout; for (ix = R2p; ix <= R6p; ix++) out = resonator(&(kt_globals.rsn[ix]), sourc) - out; outbypas = kt_globals.amp_bypas * sourc; out = outbypas - out; out = resonator(&(kt_globals.rsn[Rout]), out); temp = (int)(out * wdata.amplitude * kt_globals.amp_gain0); // Convert back to integer // mix with a recorded WAV if required for this phoneme int z2; signed char c; int sample; z2 = 0; if (wdata.mix_wavefile_ix < wdata.n_mix_wavefile) { if (wdata.mix_wave_scale == 0) { // a 16 bit sample c = wdata.mix_wavefile[wdata.mix_wavefile_ix+1]; sample = wdata.mix_wavefile[wdata.mix_wavefile_ix] + (c * 256); wdata.mix_wavefile_ix += 2; } else { // a 8 bit sample, scaled sample = (signed char)wdata.mix_wavefile[wdata.mix_wavefile_ix++] * wdata.mix_wave_scale; } z2 = sample * wdata.amplitude_v / 1024; z2 = (z2 * wdata.mix_wave_amp)/40; temp += z2; } // if fadeout is set, fade to zero over 64 samples, to avoid clicks at end of synthesis if (kt_globals.fadeout > 0) { kt_globals.fadeout--; temp = (temp * kt_globals.fadeout) / 64; } value = (int)temp + ((echo_buf[echo_tail++]*echo_amp) >> 8); if (echo_tail >= N_ECHO_BUF) echo_tail = 0; if (value < -32768) value = -32768; if (value > 32767) value = 32767; *out_ptr++ = value; *out_ptr++ = value >> 8; echo_buf[echo_head++] = value; if (echo_head >= N_ECHO_BUF) echo_head = 0; sample_count++; if (out_ptr >= out_end) return 1; } return 0; } void KlattReset(int control) { int r_ix; if (control == 2) { // Full reset kt_globals.FLPhz = (950 * kt_globals.samrate) / 10000; kt_globals.BLPhz = (630 * kt_globals.samrate) / 10000; kt_globals.minus_pi_t = -PI / kt_globals.samrate; kt_globals.two_pi_t = -2.0 * kt_globals.minus_pi_t; setabc(kt_globals.FLPhz, kt_globals.BLPhz, &(kt_globals.rsn[RLP])); } if (control > 0) { kt_globals.nper = 0; kt_globals.T0 = 0; kt_globals.nopen = 0; kt_globals.nmod = 0; for (r_ix = RGL; r_ix < N_RSN; r_ix++) { kt_globals.rsn[r_ix].p1 = 0; kt_globals.rsn[r_ix].p2 = 0; } } for (r_ix = 0; r_ix <= R6p; r_ix++) { kt_globals.rsn[r_ix].p1 = 0; kt_globals.rsn[r_ix].p2 = 0; } } /* function FRAME_INIT Use parameters from the input frame to set up resonator coefficients. */ static void frame_init(klatt_frame_ptr frame) { double amp_par[7]; static double amp_par_factor[7] = { 0.6, 0.4, 0.15, 0.06, 0.04, 0.022, 0.03 }; long Gain0_tmp; int ix; kt_globals.original_f0 = frame->F0hz10 / 10; frame->AVdb_tmp = frame->AVdb - 7; if (frame->AVdb_tmp < 0) frame->AVdb_tmp = 0; kt_globals.amp_aspir = DBtoLIN(frame->ASP) * 0.05; kt_globals.amp_frica = DBtoLIN(frame->AF) * 0.25; kt_globals.par_amp_voice = DBtoLIN(frame->AVpdb); kt_globals.amp_bypas = DBtoLIN(frame->AB) * 0.05; for (ix = 0; ix <= 6; ix++) { // parallel amplitudes F1 to F6, and parallel nasal pole amp_par[ix] = DBtoLIN(frame->Ap[ix]) * amp_par_factor[ix]; } Gain0_tmp = frame->Gain0 - 3; if (Gain0_tmp <= 0) Gain0_tmp = 57; kt_globals.amp_gain0 = DBtoLIN(Gain0_tmp) / kt_globals.scale_wav; // Set coefficients of variable cascade resonators for (ix = 1; ix <= 9; ix++) { // formants 1 to 8, plus nasal pole setabc(frame->Fhz[ix], frame->Bhz[ix], &(kt_globals.rsn[ix])); if (ix <= 5) { setabc(frame->Fhz_next[ix], frame->Bhz_next[ix], &(kt_globals.rsn_next[ix])); kt_globals.rsn[ix].a_inc = (kt_globals.rsn_next[ix].a - kt_globals.rsn[ix].a) / 64.0; kt_globals.rsn[ix].b_inc = (kt_globals.rsn_next[ix].b - kt_globals.rsn[ix].b) / 64.0; kt_globals.rsn[ix].c_inc = (kt_globals.rsn_next[ix].c - kt_globals.rsn[ix].c) / 64.0; } } // nasal zero anti-resonator setzeroabc(frame->Fhz[F_NZ], frame->Bhz[F_NZ], &(kt_globals.rsn[Rnz])); setzeroabc(frame->Fhz_next[F_NZ], frame->Bhz_next[F_NZ], &(kt_globals.rsn_next[Rnz])); kt_globals.rsn[F_NZ].a_inc = (kt_globals.rsn_next[F_NZ].a - kt_globals.rsn[F_NZ].a) / 64.0; kt_globals.rsn[F_NZ].b_inc = (kt_globals.rsn_next[F_NZ].b - kt_globals.rsn[F_NZ].b) / 64.0; kt_globals.rsn[F_NZ].c_inc = (kt_globals.rsn_next[F_NZ].c - kt_globals.rsn[F_NZ].c) / 64.0; // Set coefficients of parallel resonators, and amplitude of outputs for (ix = 0; ix <= 6; ix++) { setabc(frame->Fhz[ix], frame->Bphz[ix], &(kt_globals.rsn[Rparallel+ix])); kt_globals.rsn[Rparallel+ix].a *= amp_par[ix]; } // output low-pass filter setabc((long)0.0, (long)(kt_globals.samrate/2), &(kt_globals.rsn[Rout])); } /* function IMPULSIVE_SOURCE Generate a low pass filtered train of impulses as an approximation of a natural excitation waveform. Low-pass filter the differentiated impulse with a critically-damped second-order filter, time constant proportional to Kopen. */ static double impulsive_source() { static double doublet[] = { 0.0, 13000000.0, -13000000.0 }; static double vwave; if (kt_globals.nper < 3) vwave = doublet[kt_globals.nper]; else vwave = 0.0; return resonator(&(kt_globals.rsn[RGL]), vwave); } /* function NATURAL_SOURCE Vwave is the differentiated glottal flow waveform, there is a weak spectral zero around 800 Hz, magic constants a,b reset pitch synchronously. */ static double natural_source() { static double vwave; if (kt_globals.nper < kt_globals.nopen) { kt_globals.pulse_shape_a -= kt_globals.pulse_shape_b; vwave += kt_globals.pulse_shape_a; double lgtemp = vwave * 0.028; return lgtemp; } vwave = 0.0; return 0.0; } /* function PITCH_SYNC_PAR_RESET Reset selected parameters pitch-synchronously. Constant B0 controls shape of glottal pulse as a function of desired duration of open phase N0 (Note that N0 is specified in terms of 40,000 samples/sec of speech) Assume voicing waveform V(t) has form: k1 t**2 - k2 t**3 If the radiation characterivative, a temporal derivative is folded in, and we go from continuous time to discrete integers n: dV/dt = vwave[n] = sum over i=1,2,...,n of { a - (i * b) } = a n - b/2 n**2 where the constants a and b control the detailed shape and amplitude of the voicing waveform over the open potion of the voicing cycle "nopen". Let integral of dV/dt have no net dc flow --> a = (b * nopen) / 3 Let maximum of dUg(n)/dn be constant --> b = gain / (nopen * nopen) meaning as nopen gets bigger, V has bigger peak proportional to n Thus, to generate the table below for 40 <= nopen <= 263: B0[nopen - 40] = 1920000 / (nopen * nopen) */ static void pitch_synch_par_reset(klatt_frame_ptr frame) { long temp; double temp1; static long skew; static short B0[224] = { 1200, 1142, 1088, 1038, 991, 948, 907, 869, 833, 799, 768, 738, 710, 683, 658, 634, 612, 590, 570, 551, 533, 515, 499, 483, 468, 454, 440, 427, 415, 403, 391, 380, 370, 360, 350, 341, 332, 323, 315, 307, 300, 292, 285, 278, 272, 265, 259, 253, 247, 242, 237, 231, 226, 221, 217, 212, 208, 204, 199, 195, 192, 188, 184, 180, 177, 174, 170, 167, 164, 161, 158, 155, 153, 150, 147, 145, 142, 140, 137, 135, 133, 131, 128, 126, 124, 122, 120, 119, 117, 115, 113, 111, 110, 108, 106, 105, 103, 102, 100, 99, 97, 96, 95, 93, 92, 91, 90, 88, 87, 86, 85, 84, 83, 82, 80, 79, 78, 77, 76, 75, 75, 74, 73, 72, 71, 70, 69, 68, 68, 67, 66, 65, 64, 64, 63, 62, 61, 61, 60, 59, 59, 58, 57, 57, 56, 56, 55, 55, 54, 54, 53, 53, 52, 52, 51, 51, 50, 50, 49, 49, 48, 48, 47, 47, 46, 46, 45, 45, 44, 44, 43, 43, 42, 42, 41, 41, 41, 41, 40, 40, 39, 39, 38, 38, 38, 38, 37, 37, 36, 36, 36, 36, 35, 35, 35, 35, 34, 34, 33, 33, 33, 33, 32, 32, 32, 32, 31, 31, 31, 31, 30, 30, 30, 30, 29, 29, 29, 29, 28, 28, 28, 28, 27, 27 }; if (frame->F0hz10 > 0) { // T0 is 4* the number of samples in one pitch period kt_globals.T0 = (40 * kt_globals.samrate) / frame->F0hz10; kt_globals.amp_voice = DBtoLIN(frame->AVdb_tmp); // Duration of period before amplitude modulation kt_globals.nmod = kt_globals.T0; if (frame->AVdb_tmp > 0) kt_globals.nmod >>= 1; // Breathiness of voicing waveform kt_globals.amp_breth = DBtoLIN(frame->Aturb) * 0.1; // Set open phase of glottal period where 40 <= open phase <= 263 kt_globals.nopen = 4 * frame->Kopen; if ((kt_globals.glsource == IMPULSIVE) && (kt_globals.nopen > 263)) kt_globals.nopen = 263; if (kt_globals.nopen >= (kt_globals.T0-1)) kt_globals.nopen = kt_globals.T0 - 2; if (kt_globals.nopen < 40) { // F0 max = 1000 Hz kt_globals.nopen = 40; } // Reset a & b, which determine shape of "natural" glottal waveform kt_globals.pulse_shape_b = B0[kt_globals.nopen-40]; kt_globals.pulse_shape_a = (kt_globals.pulse_shape_b * kt_globals.nopen) * 0.333; // Reset width of "impulsive" glottal pulse temp = kt_globals.samrate / kt_globals.nopen; setabc((long)0, temp, &(kt_globals.rsn[RGL])); // Make gain at F1 about constant temp1 = kt_globals.nopen *.00833; kt_globals.rsn[RGL].a *= temp1 * temp1; // Truncate skewness so as not to exceed duration of closed phase // of glottal period. temp = kt_globals.T0 - kt_globals.nopen; if (frame->Kskew > temp) frame->Kskew = temp; if (skew >= 0) skew = frame->Kskew; else skew = -frame->Kskew; // Add skewness to closed portion of voicing period kt_globals.T0 = kt_globals.T0 + skew; skew = -skew; } else { kt_globals.T0 = 4; // Default for f0 undefined kt_globals.amp_voice = 0.0; kt_globals.nmod = kt_globals.T0; kt_globals.amp_breth = 0.0; kt_globals.pulse_shape_a = 0.0; kt_globals.pulse_shape_b = 0.0; } // Reset these pars pitch synchronously or at update rate if f0=0 if ((kt_globals.T0 != 4) || (kt_globals.ns == 0)) { // Set one-pole low-pass filter that tilts glottal source kt_globals.decay = (0.033 * frame->TLTdb); if (kt_globals.decay > 0.0) kt_globals.onemd = 1.0 - kt_globals.decay; else kt_globals.onemd = 1.0; } } /* function SETABC Convert formant freqencies and bandwidth into resonator difference equation constants. */ static void setabc(long int f, long int bw, resonator_ptr rp) { // Let r = exp(-pi bw t) double arg = kt_globals.minus_pi_t * bw; double r = exp(arg); // Let c = -r**2 rp->c = -(r * r); // Let b = r * 2*cos(2 pi f t) arg = kt_globals.two_pi_t * f; rp->b = r * cos(arg) * 2.0; // Let a = 1.0 - b - c rp->a = 1.0 - rp->b - rp->c; } /* function SETZEROABC Convert formant freqencies and bandwidth into anti-resonator difference equation constants. */ static void setzeroabc(long int f, long int bw, resonator_ptr rp) { f = -f; // First compute ordinary resonator coefficients // Let r = exp(-pi bw t) double arg = kt_globals.minus_pi_t * bw; double r = exp(arg); // Let c = -r**2 rp->c = -(r * r); // Let b = r * 2*cos(2 pi f t) arg = kt_globals.two_pi_t * f; rp->b = r * cos(arg) * 2.; // Let a = 1.0 - b - c rp->a = 1.0 - rp->b - rp->c; // Now convert to antiresonator coefficients (a'=1/a, b'=b/a, c'=c/a) // If f == 0 then rp->a gets set to 0 which makes a'=1/a set a', b' and c' to // INF, causing an audible sound spike when triggered (e.g. apiration with the // nasal register set to f=0, bw=0). if (rp->a != 0) { // Now convert to antiresonator coefficients (a'=1/a, b'=b/a, c'=c/a) rp->a = 1.0 / rp->a; rp->c *= -rp->a; rp->b *= -rp->a; } } /* function GEN_NOISE Random number generator (return a number between -8191 and +8191) Noise spectrum is tilted down by soft low-pass filter having a pole near the origin in the z-plane, i.e. output = input + (0.75 * lastoutput) */ static double gen_noise(double noise) { static double nlast; long temp = (long)getrandom(-8191, 8191); kt_globals.nrand = (long)temp; noise = kt_globals.nrand + (0.75 * nlast); nlast = noise; return noise; } /* function DBTOLIN Convert from decibels to a linear scale factor Conversion table, db to linear, 87 dB --> 32767 86 dB --> 29491 (1 dB down = 0.5**1/6) ... 81 dB --> 16384 (6 dB down = 0.5) ... 0 dB --> 0 The just noticeable difference for a change in intensity of a vowel is approximately 1 dB. Thus all amplitudes are quantized to 1 dB steps. */ static double DBtoLIN(long dB) { static short amptable[88] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 7, 8, 9, 10, 11, 13, 14, 16, 18, 20, 22, 25, 28, 32, 35, 40, 45, 51, 57, 64, 71, 80, 90, 101, 114, 128, 142, 159, 179, 202, 227, 256, 284, 318, 359, 405, 455, 512, 568, 638, 719, 881, 911, 1024, 1137, 1276, 1438, 1622, 1823, 2048, 2273, 2552, 2875, 3244, 3645, 4096, 4547, 5104, 5751, 6488, 7291, 8192, 9093, 10207, 11502, 12976, 14582, 16384, 18350, 20644, 23429, 26214, 29491, 32767 }; if ((dB < 0) || (dB > 87)) return 0; return (double)(amptable[dB]) * 0.001; } extern voice_t *wvoice; static klatt_peaks_t peaks[N_PEAKS]; static int end_wave; static int klattp[N_KLATTP]; static double klattp1[N_KLATTP]; static double klattp_inc[N_KLATTP]; int Wavegen_Klatt(int resume) { int pk; int x; int ix; int fade; if (resume == 0) sample_count = 0; while (sample_count < nsamples) { kt_frame.F0hz10 = (wdata.pitch * 10) / 4096; // formants F6,F7,F8 are fixed values for cascade resonators, set in KlattInit() // but F6 is used for parallel resonator // F0 is used for the nasal zero for (ix = 0; ix < 6; ix++) { kt_frame.Fhz[ix] = peaks[ix].freq; if (ix < 4) kt_frame.Bhz[ix] = peaks[ix].bw; } for (ix = 1; ix < 7; ix++) kt_frame.Ap[ix] = peaks[ix].ap; kt_frame.AVdb = klattp[KLATT_AV]; kt_frame.AVpdb = klattp[KLATT_AVp]; kt_frame.AF = klattp[KLATT_Fric]; kt_frame.AB = klattp[KLATT_FricBP]; kt_frame.ASP = klattp[KLATT_Aspr]; kt_frame.Aturb = klattp[KLATT_Turb]; kt_frame.Kskew = klattp[KLATT_Skew]; kt_frame.TLTdb = klattp[KLATT_Tilt]; kt_frame.Kopen = klattp[KLATT_Kopen]; // advance formants for (pk = 0; pk < N_PEAKS; pk++) { peaks[pk].freq1 += peaks[pk].freq_inc; peaks[pk].freq = (int)peaks[pk].freq1; peaks[pk].bw1 += peaks[pk].bw_inc; peaks[pk].bw = (int)peaks[pk].bw1; peaks[pk].bp1 += peaks[pk].bp_inc; peaks[pk].bp = (int)peaks[pk].bp1; peaks[pk].ap1 += peaks[pk].ap_inc; peaks[pk].ap = (int)peaks[pk].ap1; } // advance other parameters for (ix = 0; ix < N_KLATTP; ix++) { klattp1[ix] += klattp_inc[ix]; klattp[ix] = (int)klattp1[ix]; } for (ix = 0; ix <= 6; ix++) { kt_frame.Fhz_next[ix] = peaks[ix].freq; if (ix < 4) kt_frame.Bhz_next[ix] = peaks[ix].bw; } // advance the pitch wdata.pitch_ix += wdata.pitch_inc; if ((ix = wdata.pitch_ix>>8) > 127) ix = 127; x = wdata.pitch_env[ix] * wdata.pitch_range; wdata.pitch = (x>>8) + wdata.pitch_base; kt_globals.nspfr = (nsamples - sample_count); if (kt_globals.nspfr > STEPSIZE) kt_globals.nspfr = STEPSIZE; frame_init(&kt_frame); // get parameters for next frame of speech if (parwave(&kt_frame) == 1) return 1; // output buffer is full } if (end_wave > 0) { fade = 64; // not followed by formant synthesis // fade out to avoid a click kt_globals.fadeout = fade; end_wave = 0; sample_count -= fade; kt_globals.nspfr = fade; if (parwave(&kt_frame) == 1) return 1; // output buffer is full } return 0; } void SetSynth_Klatt(int length, int modn, frame_t *fr1, frame_t *fr2, voice_t *v, int control) { int ix; DOUBLEX next; int qix; int cmd; frame_t *fr3; static frame_t prev_fr; if (wvoice != NULL) { if ((wvoice->klattv[0] > 0) && (wvoice->klattv[0] <= 4 )) { kt_globals.glsource = wvoice->klattv[0]; kt_globals.scale_wav = scale_wav_tab[kt_globals.glsource]; } kt_globals.f0_flutter = wvoice->flutter/32; } end_wave = 0; if (control & 2) end_wave = 1; // fadeout at the end if (control & 1) { end_wave = 1; for (qix = wcmdq_head+1;; qix++) { if (qix >= N_WCMDQ) qix = 0; if (qix == wcmdq_tail) break; cmd = wcmdq[qix][0]; if (cmd == WCMD_KLATT) { end_wave = 0; // next wave generation is from another spectrum fr3 = (frame_t *)wcmdq[qix][2]; for (ix = 1; ix < 6; ix++) { if (fr3->ffreq[ix] != fr2->ffreq[ix]) { // there is a discontinuity in formants end_wave = 2; break; } } break; } if ((cmd == WCMD_WAVE) || (cmd == WCMD_PAUSE)) break; // next is not from spectrum, so continue until end of wave cycle } } if (control & 1) { for (ix = 1; ix < 6; ix++) { if (prev_fr.ffreq[ix] != fr1->ffreq[ix]) { // Discontinuity in formants. // end_wave was set in SetSynth_Klatt() to fade out the previous frame KlattReset(0); break; } } memcpy(&prev_fr, fr2, sizeof(prev_fr)); } for (ix = 0; ix < N_KLATTP; ix++) { if ((ix >= 5) && ((fr1->frflags & FRFLAG_KLATT) == 0)) { klattp1[ix] = klattp[ix] = 0; klattp_inc[ix] = 0; } else { klattp1[ix] = klattp[ix] = fr1->klattp[ix]; klattp_inc[ix] = (double)((fr2->klattp[ix] - klattp[ix]) * STEPSIZE)/length; } } nsamples = length; for (ix = 1; ix < 6; ix++) { peaks[ix].freq1 = (fr1->ffreq[ix] * v->freq[ix] / 256.0) + v->freqadd[ix]; peaks[ix].freq = (int)peaks[ix].freq1; next = (fr2->ffreq[ix] * v->freq[ix] / 256.0) + v->freqadd[ix]; peaks[ix].freq_inc = ((next - peaks[ix].freq1) * STEPSIZE) / length; if (ix < 4) { // klatt bandwidth for f1, f2, f3 (others are fixed) peaks[ix].bw1 = fr1->bw[ix] * 2; peaks[ix].bw = (int)peaks[ix].bw1; next = fr2->bw[ix] * 2; peaks[ix].bw_inc = ((next - peaks[ix].bw1) * STEPSIZE) / length; } } // nasal zero frequency peaks[0].freq1 = fr1->klattp[KLATT_FNZ] * 2; if (peaks[0].freq1 == 0) peaks[0].freq1 = kt_frame.Fhz[F_NP]; // if no nasal zero, set it to same freq as nasal pole peaks[0].freq = (int)peaks[0].freq1; next = fr2->klattp[KLATT_FNZ] * 2; if (next == 0) next = kt_frame.Fhz[F_NP]; peaks[0].freq_inc = ((next - peaks[0].freq1) * STEPSIZE) / length; peaks[0].bw1 = 89; peaks[0].bw = 89; peaks[0].bw_inc = 0; if (fr1->frflags & FRFLAG_KLATT) { // the frame contains additional parameters for parallel resonators for (ix = 1; ix < 7; ix++) { peaks[ix].bp1 = fr1->klatt_bp[ix] * 4; // parallel bandwidth peaks[ix].bp = (int)peaks[ix].bp1; next = fr2->klatt_bp[ix] * 4; peaks[ix].bp_inc = ((next - peaks[ix].bp1) * STEPSIZE) / length; peaks[ix].ap1 = fr1->klatt_ap[ix]; // parallal amplitude peaks[ix].ap = (int)peaks[ix].ap1; next = fr2->klatt_ap[ix]; peaks[ix].ap_inc = ((next - peaks[ix].ap1) * STEPSIZE) / length; } } } int Wavegen_Klatt2(int length, int modulation, int resume, frame_t *fr1, frame_t *fr2) { if (resume == 0) SetSynth_Klatt(length, modulation, fr1, fr2, wvoice, 1); return Wavegen_Klatt(resume); } void KlattInit() { static short formant_hz[10] = { 280, 688, 1064, 2806, 3260, 3700, 6500, 7000, 8000, 280 }; static short bandwidth[10] = { 89, 160, 70, 160, 200, 200, 500, 500, 500, 89 }; static short parallel_amp[10] = { 0, 59, 59, 59, 59, 59, 59, 0, 0, 0 }; static short parallel_bw[10] = { 59, 59, 89, 149, 200, 200, 500, 0, 0, 0 }; sample_count = 0; kt_globals.synthesis_model = CASCADE_PARALLEL; kt_globals.samrate = 22050; kt_globals.glsource = IMPULSIVE; kt_globals.scale_wav = scale_wav_tab[kt_globals.glsource]; kt_globals.natural_samples = natural_samples; kt_globals.num_samples = NUMBER_OF_SAMPLES; kt_globals.sample_factor = 3.0; kt_globals.nspfr = (kt_globals.samrate * 10) / 1000; kt_globals.outsl = 0; kt_globals.f0_flutter = 20; KlattReset(2); // set default values for frame parameters for (int ix = 0; ix <= 9; ix++) { kt_frame.Fhz[ix] = formant_hz[ix]; kt_frame.Bhz[ix] = bandwidth[ix]; kt_frame.Ap[ix] = parallel_amp[ix]; kt_frame.Bphz[ix] = parallel_bw[ix]; } kt_frame.Bhz_next[F_NZ] = bandwidth[F_NZ]; kt_frame.F0hz10 = 1000; kt_frame.AVdb = 59; kt_frame.ASP = 0; kt_frame.Kopen = 40; kt_frame.Aturb = 0; kt_frame.TLTdb = 0; kt_frame.AF = 50; kt_frame.Kskew = 0; kt_frame.AB = 0; kt_frame.AVpdb = 0; kt_frame.Gain0 = 62; }