from transformers import AutoTokenizer, T5ForConditionalGeneration from Parsivar.normalizer import Normalizer class GE2PE(): def __init__(self, model_path = './content/checkpoint-320', GPU = False, dictionary = None): """ model_path: path to where the GE2PE transformer is saved. GPU: boolean indicating use of GPU in generation. dictionary: a dictionary for self-defined words. """ self.GPU = GPU self.model = T5ForConditionalGeneration.from_pretrained(model_path) if self.GPU: self.model = self.model.cuda() self.tokenizer = AutoTokenizer.from_pretrained(model_path) self.dictionary = dictionary self.norma = Normalizer(pinglish_conversion_needed=True) def is_vowel(self, char): return (char in ['a', '/', 'i', 'e', 'u', 'o']) def rules(self, grapheme, phoneme): grapheme = grapheme.replace('آ', 'ءا') words = grapheme.split(' ') prons = phoneme.replace('1', '').split(' ') if len(words) != len(prons): return phoneme for i in range(len(words)): if 'ِ' not in words[i] and 'ُ' not in words[i] and 'َ' not in words[i]: continue for j in range(len(words[i])): if words[i][j] == 'َ': if j == len(words[i]) - 1 and prons[i][-1] != '/': prons[i] = prons[i] + '/' elif self.is_vowel(prons[i][j]): prons[i] = prons[i][:j] + '/' + prons[i][j+1:] else: prons[i] = prons[i][:j] + '/' + prons[i][j:] if words[i][j] == 'ِ': if j == len(words[i]) - 1 and prons[i][-1] != 'e': prons[i] = prons[i] + 'e' elif self.is_vowel(prons[i][j]): prons[i] = prons[i][:j] + 'e' + prons[i][j+1:] else: prons[i] = prons[i][:j] + 'e' + prons[i][j:] if words[i][j] == 'ُ': if j == len(words[i]) - 1 and prons[i][-1] != 'o': prons[i] = prons[i] + 'o' elif self.is_vowel(prons[i][j]): prons[i] = prons[i][:j] + 'o' + prons[i][j+1:] else: prons[i] = prons[i][:j] + 'o' + prons[i][j:] return ' '.join(prons) def lexicon(self, grapheme, phoneme): words = grapheme.split(' ') prons = phoneme.split(' ') output = prons for i in range(len(words)): try: output[i] = self.dictionary[words[i]] if prons[i][-1] == '1' and output[i][-1] != 'e': output[i] = output[i] + 'e1' elif prons[i][-1] == '1' and output[i][-1] == 'e': output[i] = output[i] + 'ye1' except: pass return ' '.join(output) def generate(self, input_list, batch_size = 10, use_rules = False, use_dict = False): """ input_list: list of sentences to be phonemized. batch_size: inference batch_size use_rules: boolean indicating the use of rules to apply short vowels. use_dict: boolean indicating the use of self-defined dictionary. returns the list of phonemized sentences. """ output_list = [] input_list = [self.norma.normalize(text).replace('ك', 'ک') for text in input_list] input = input_list input_list = [text.replace('ِ', '').replace('ُ', '').replace('َ', '') for text in input_list] for i in range(0,len(input_list),batch_size): in_ids = self.tokenizer(input_list[i:i+batch_size], padding=True,add_special_tokens=False, return_attention_mask=True,return_tensors='pt') if self.GPU: out_ids = self.model.generate(in_ids["input_ids"].cuda(), attention_mask=in_ids["attention_mask"].cuda(), num_beams=5, min_length= 1, max_length=512, early_stopping=True,) else: out_ids = self.model.generate(in_ids["input_ids"], attention_mask=in_ids["attention_mask"], num_beams=5, min_length= 1, max_length=512, early_stopping=True,) output_list += self.tokenizer.batch_decode(out_ids, skip_special_tokens=True) if use_dict: for i in range(len(input_list)): output_list[i] = self.lexicon(input_list[i], output_list[i]) if use_rules: for i in range(len(input_list)): output_list[i] = self.rules(input[i], output_list[i]) output_list = [i.strip() for i in output_list] return output_list