@@ -0,0 +1 @@ | |||
/options.py |
@@ -0,0 +1,77 @@ | |||
# MeLU: Meta-Learned User Preference Estimator for Cold-Start Recommendation | |||
PyTorch implementation of the paper: "MeLU: Meta-Learned User Preference Estimator for Cold-Start Recommendation", KDD, 2019. | |||
## Abstract | |||
This paper proposes a recommender system to alleviate the coldstart problem that can estimate user preferences based on only a small number of items. To identify a user’s preference in the cold state, existing recommender systems, such as Netflix, initially provide items to a user; we call those items evidence candidates. Recommendations are then made based on the items selected by the user. Previous recommendation studies have two limitations: (1) the users who consumed a few items have poor recommendations and (2) inadequate evidence candidates are used to identify user preferences. We propose a meta-learning-based recommender system called MeLU to overcome these two limitations. From metalearning, which can rapidly adopt new task with a few examples, MeLU can estimate new user’s preferences with a few consumed items. In addition, we provide an evidence candidate selection strategy that determines distinguishing items for customized preference estimation. We validate MeLU with two benchmark datasets, and the proposed model reduces at least 5.92% mean absolute error than two comparative models on the datasets. We also conduct a user study experiment to verify the evidence selection strategy. | |||
## Usage | |||
### Requirements | |||
- python 3.6+ | |||
- pytorch 1.1+ | |||
- tqdm 4.32+ | |||
- pandas 0.24+ | |||
### Preparing dataset | |||
It needs about 22GB of hard disk space. | |||
```python | |||
import os | |||
from data_generation import generate | |||
master_path= "./ml" | |||
if not os.path.exists("{}/".format(master_path)): | |||
os.mkdir("{}/".format(master_path)) | |||
generate(master_path) | |||
``` | |||
### Training a model | |||
Our model needs support and query sets. The support set is for local update, and the query set is for global update. | |||
```python | |||
import torch | |||
import pickle | |||
from MeLU import MeLU | |||
from options import config | |||
from model_training import training | |||
melu = MeLU(config) | |||
model_filename = "{}/models.pkl".format(master_path) | |||
if not os.path.exists(model_filename): | |||
# Load training dataset. | |||
training_set_size = int(len(os.listdir("{}/warm_state".format(master_path))) / 4) | |||
supp_xs_s = [] | |||
supp_ys_s = [] | |||
query_xs_s = [] | |||
query_ys_s = [] | |||
for idx in range(training_set_size): | |||
supp_xs_s.append(pickle.load(open("{}/warm_state/supp_x_{}.pkl".format(master_path, idx), "rb"))) | |||
supp_ys_s.append(pickle.load(open("{}/warm_state/supp_y_{}.pkl".format(master_path, idx), "rb"))) | |||
query_xs_s.append(pickle.load(open("{}/warm_state/query_x_{}.pkl".format(master_path, idx), "rb"))) | |||
query_ys_s.append(pickle.load(open("{}/warm_state/query_y_{}.pkl".format(master_path, idx), "rb"))) | |||
total_dataset = list(zip(supp_xs_s, supp_ys_s, query_xs_s, query_ys_s)) | |||
del(supp_xs_s, supp_ys_s, query_xs_s, query_ys_s) | |||
training(melu, total_dataset, batch_size=config['batch_size'], num_epoch=config['num_epoch'], model_save=True, model_filename=model_filename) | |||
else: | |||
trained_state_dict = torch.load(model_filename) | |||
melu.load_state_dict(trained_state_dict) | |||
``` | |||
### Extracting evidence candidates | |||
We extract evidence candidate list based on the MeLU. | |||
```python | |||
from evidence_candidate import selection | |||
evidence_candidate_list = selection(melu, master_path, config['num_candidate']) | |||
for movie, score in evidence_candidate_list: | |||
print(movie, score) | |||
``` | |||
Note that, you may have a different evidence candidate list from the paper. That's because we do not open the random seeds of data generation and model training. | |||
## Citation | |||
If you use this code, please cite the paper. | |||
``` | |||
@inproceedings{lee2019melu, | |||
title={MeLU: Meta-Learned User Preference Estimator for Cold-Start Recommendation}, | |||
author={Lee, Hoyeop and Im, Jinbae and Jang, Seongwon and Cho, Hyunsouk and Chung, Sehee}, | |||
booktitle={Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery \& Data Mining}, | |||
pages={1073--1082}, | |||
year={2019}, | |||
organization={ACM} | |||
} | |||
``` |
@@ -0,0 +1,136 @@ | |||
import re | |||
import os | |||
import json | |||
import torch | |||
import numpy as np | |||
import random | |||
import pickle | |||
from tqdm import tqdm | |||
from options import states | |||
from dataset import movielens_1m | |||
def item_converting(row, rate_list, genre_list, director_list, actor_list): | |||
rate_idx = torch.tensor([[rate_list.index(str(row['rate']))]]).long() | |||
genre_idx = torch.zeros(1, 25).long() | |||
for genre in str(row['genre']).split(", "): | |||
idx = genre_list.index(genre) | |||
genre_idx[0, idx] = 1 | |||
director_idx = torch.zeros(1, 2186).long() | |||
for director in str(row['director']).split(", "): | |||
idx = director_list.index(re.sub(r'\([^()]*\)', '', director)) | |||
director_idx[0, idx] = 1 | |||
actor_idx = torch.zeros(1, 8030).long() | |||
for actor in str(row['actors']).split(", "): | |||
idx = actor_list.index(actor) | |||
actor_idx[0, idx] = 1 | |||
return torch.cat((rate_idx, genre_idx, director_idx, actor_idx), 1) | |||
def user_converting(row, gender_list, age_list, occupation_list, zipcode_list): | |||
gender_idx = torch.tensor([[gender_list.index(str(row['gender']))]]).long() | |||
age_idx = torch.tensor([[age_list.index(str(row['age']))]]).long() | |||
occupation_idx = torch.tensor([[occupation_list.index(str(row['occupation_code']))]]).long() | |||
zip_idx = torch.tensor([[zipcode_list.index(str(row['zip'])[:5])]]).long() | |||
return torch.cat((gender_idx, age_idx, occupation_idx, zip_idx), 1) | |||
def load_list(fname): | |||
list_ = [] | |||
with open(fname, encoding="utf-8") as f: | |||
for line in f.readlines(): | |||
list_.append(line.strip()) | |||
return list_ | |||
def generate(master_path): | |||
dataset_path = "movielens/ml-1m" | |||
rate_list = load_list("{}/m_rate.txt".format(dataset_path)) | |||
genre_list = load_list("{}/m_genre.txt".format(dataset_path)) | |||
actor_list = load_list("{}/m_actor.txt".format(dataset_path)) | |||
director_list = load_list("{}/m_director.txt".format(dataset_path)) | |||
gender_list = load_list("{}/m_gender.txt".format(dataset_path)) | |||
age_list = load_list("{}/m_age.txt".format(dataset_path)) | |||
occupation_list = load_list("{}/m_occupation.txt".format(dataset_path)) | |||
zipcode_list = load_list("{}/m_zipcode.txt".format(dataset_path)) | |||
if not os.path.exists("{}/warm_state/".format(master_path)): | |||
for state in states: | |||
os.mkdir("{}/{}/".format(master_path, state)) | |||
if not os.path.exists("{}/log/".format(master_path)): | |||
os.mkdir("{}/log/".format(master_path)) | |||
dataset = movielens_1m() | |||
# hashmap for item information | |||
if not os.path.exists("{}/m_movie_dict.pkl".format(master_path)): | |||
movie_dict = {} | |||
for idx, row in dataset.item_data.iterrows(): | |||
m_info = item_converting(row, rate_list, genre_list, director_list, actor_list) | |||
movie_dict[row['movie_id']] = m_info | |||
pickle.dump(movie_dict, open("{}/m_movie_dict.pkl".format(master_path), "wb")) | |||
else: | |||
movie_dict = pickle.load(open("{}/m_movie_dict.pkl".format(master_path), "rb")) | |||
# hashmap for user profile | |||
if not os.path.exists("{}/m_user_dict.pkl".format(master_path)): | |||
user_dict = {} | |||
for idx, row in dataset.user_data.iterrows(): | |||
u_info = user_converting(row, gender_list, age_list, occupation_list, zipcode_list) | |||
user_dict[row['user_id']] = u_info | |||
pickle.dump(user_dict, open("{}/m_user_dict.pkl".format(master_path), "wb")) | |||
else: | |||
user_dict = pickle.load(open("{}/m_user_dict.pkl".format(master_path), "rb")) | |||
for state in states: | |||
idx = 0 | |||
if not os.path.exists("{}/{}/{}".format(master_path, "log", state)): | |||
os.mkdir("{}/{}/{}".format(master_path, "log", state)) | |||
with open("{}/{}.json".format(dataset_path, state), encoding="utf-8") as f: | |||
dataset = json.loads(f.read()) | |||
with open("{}/{}_y.json".format(dataset_path, state), encoding="utf-8") as f: | |||
dataset_y = json.loads(f.read()) | |||
for _, user_id in tqdm(enumerate(dataset.keys())): | |||
u_id = int(user_id) | |||
seen_movie_len = len(dataset[str(u_id)]) | |||
indices = list(range(seen_movie_len)) | |||
if seen_movie_len < 13 or seen_movie_len > 100: | |||
continue | |||
random.shuffle(indices) | |||
tmp_x = np.array(dataset[str(u_id)]) | |||
tmp_y = np.array(dataset_y[str(u_id)]) | |||
support_x_app = None | |||
for m_id in tmp_x[indices[:-10]]: | |||
m_id = int(m_id) | |||
tmp_x_converted = torch.cat((movie_dict[m_id], user_dict[u_id]), 1) | |||
try: | |||
support_x_app = torch.cat((support_x_app, tmp_x_converted), 0) | |||
except: | |||
support_x_app = tmp_x_converted | |||
query_x_app = None | |||
for m_id in tmp_x[indices[-10:]]: | |||
m_id = int(m_id) | |||
u_id = int(user_id) | |||
tmp_x_converted = torch.cat((movie_dict[m_id], user_dict[u_id]), 1) | |||
try: | |||
query_x_app = torch.cat((query_x_app, tmp_x_converted), 0) | |||
except: | |||
query_x_app = tmp_x_converted | |||
support_y_app = torch.FloatTensor(tmp_y[indices[:-10]]) | |||
query_y_app = torch.FloatTensor(tmp_y[indices[-10:]]) | |||
pickle.dump(support_x_app, open("{}/{}/supp_x_{}.pkl".format(master_path, state, idx), "wb")) | |||
pickle.dump(support_y_app, open("{}/{}/supp_y_{}.pkl".format(master_path, state, idx), "wb")) | |||
pickle.dump(query_x_app, open("{}/{}/query_x_{}.pkl".format(master_path, state, idx), "wb")) | |||
pickle.dump(query_y_app, open("{}/{}/query_y_{}.pkl".format(master_path, state, idx), "wb")) | |||
with open("{}/log/{}/supp_x_{}_u_m_ids.txt".format(master_path, state, idx), "w") as f: | |||
for m_id in tmp_x[indices[:-10]]: | |||
f.write("{}\t{}\n".format(u_id, m_id)) | |||
with open("{}/log/{}/query_x_{}_u_m_ids.txt".format(master_path, state, idx), "w") as f: | |||
for m_id in tmp_x[indices[-10:]]: | |||
f.write("{}\t{}\n".format(u_id, m_id)) | |||
idx += 1 |
@@ -0,0 +1,30 @@ | |||
import datetime | |||
import pandas as pd | |||
class movielens_1m(object): | |||
def __init__(self): | |||
self.user_data, self.item_data, self.score_data = self.load() | |||
def load(self): | |||
path = "movielens/ml-1m" | |||
profile_data_path = "{}/users.dat".format(path) | |||
score_data_path = "{}/ratings.dat".format(path) | |||
item_data_path = "{}/movies_extrainfos.dat".format(path) | |||
profile_data = pd.read_csv( | |||
profile_data_path, names=['user_id', 'gender', 'age', 'occupation_code', 'zip'], | |||
sep="::", engine='python' | |||
) | |||
item_data = pd.read_csv( | |||
item_data_path, names=['movie_id', 'title', 'year', 'rate', 'released', 'genre', 'director', 'writer', 'actors', 'plot', 'poster'], | |||
sep="::", engine='python', encoding="utf-8" | |||
) | |||
score_data = pd.read_csv( | |||
score_data_path, names=['user_id', 'movie_id', 'rating', 'timestamp'], | |||
sep="::", engine='python' | |||
) | |||
score_data['time'] = score_data["timestamp"].map(lambda x: datetime.datetime.fromtimestamp(x)) | |||
score_data = score_data.drop(["timestamp"], axis=1) | |||
return profile_data, item_data, score_data |
@@ -0,0 +1,34 @@ | |||
import torch | |||
from copy import deepcopy | |||
from torch.autograd import Variable | |||
from torch.nn import functional as F | |||
from collections import OrderedDict | |||
from embeddings import item, user | |||
class EmbeddingModule(torch.nn.Module): | |||
def __init__(self, config): | |||
super(EmbeddingModule, self).__init__() | |||
self.embedding_dim = config['embedding_dim'] | |||
self.use_cuda = config['use_cuda'] | |||
self.item_emb = item(config) | |||
self.user_emb = user(config) | |||
def forward(self, x, training = True): | |||
rate_idx = Variable(x[:, 0], requires_grad=False) | |||
genre_idx = Variable(x[:, 1:26], requires_grad=False) | |||
director_idx = Variable(x[:, 26:2212], requires_grad=False) | |||
actor_idx = Variable(x[:, 2212:10242], requires_grad=False) | |||
gender_idx = Variable(x[:, 10242], requires_grad=False) | |||
age_idx = Variable(x[:, 10243], requires_grad=False) | |||
occupation_idx = Variable(x[:, 10244], requires_grad=False) | |||
area_idx = Variable(x[:, 10245], requires_grad=False) | |||
item_emb = self.item_emb(rate_idx, genre_idx, director_idx, actor_idx) | |||
user_emb = self.user_emb(gender_idx, age_idx, occupation_idx, area_idx) | |||
x = torch.cat((item_emb, user_emb), 1) | |||
return x | |||
@@ -0,0 +1,80 @@ | |||
import torch | |||
import torch.nn as nn | |||
import torch.nn.functional as F | |||
class item(torch.nn.Module): | |||
def __init__(self, config): | |||
super(item, self).__init__() | |||
self.num_rate = config['num_rate'] | |||
self.num_genre = config['num_genre'] | |||
self.num_director = config['num_director'] | |||
self.num_actor = config['num_actor'] | |||
self.embedding_dim = config['embedding_dim'] | |||
self.embedding_rate = torch.nn.Embedding( | |||
num_embeddings=self.num_rate, | |||
embedding_dim=self.embedding_dim | |||
) | |||
self.embedding_genre = torch.nn.Linear( | |||
in_features=self.num_genre, | |||
out_features=self.embedding_dim, | |||
bias=False | |||
) | |||
self.embedding_director = torch.nn.Linear( | |||
in_features=self.num_director, | |||
out_features=self.embedding_dim, | |||
bias=False | |||
) | |||
self.embedding_actor = torch.nn.Linear( | |||
in_features=self.num_actor, | |||
out_features=self.embedding_dim, | |||
bias=False | |||
) | |||
def forward(self, rate_idx, genre_idx, director_idx, actors_idx, vars=None): | |||
rate_emb = self.embedding_rate(rate_idx) | |||
genre_emb = self.embedding_genre(genre_idx.float()) / torch.sum(genre_idx.float(), 1).view(-1, 1) | |||
director_emb = self.embedding_director(director_idx.float()) / torch.sum(director_idx.float(), 1).view(-1, 1) | |||
actors_emb = self.embedding_actor(actors_idx.float()) / torch.sum(actors_idx.float(), 1).view(-1, 1) | |||
return torch.cat((rate_emb, genre_emb, director_emb, actors_emb), 1) | |||
class user(torch.nn.Module): | |||
def __init__(self, config): | |||
super(user, self).__init__() | |||
self.num_gender = config['num_gender'] | |||
self.num_age = config['num_age'] | |||
self.num_occupation = config['num_occupation'] | |||
self.num_zipcode = config['num_zipcode'] | |||
self.embedding_dim = config['embedding_dim'] | |||
self.embedding_gender = torch.nn.Embedding( | |||
num_embeddings=self.num_gender, | |||
embedding_dim=self.embedding_dim | |||
) | |||
self.embedding_age = torch.nn.Embedding( | |||
num_embeddings=self.num_age, | |||
embedding_dim=self.embedding_dim | |||
) | |||
self.embedding_occupation = torch.nn.Embedding( | |||
num_embeddings=self.num_occupation, | |||
embedding_dim=self.embedding_dim | |||
) | |||
self.embedding_area = torch.nn.Embedding( | |||
num_embeddings=self.num_zipcode, | |||
embedding_dim=self.embedding_dim | |||
) | |||
def forward(self, gender_idx, age_idx, occupation_idx, area_idx): | |||
gender_emb = self.embedding_gender(gender_idx) | |||
age_emb = self.embedding_age(age_idx) | |||
occupation_emb = self.embedding_occupation(occupation_idx) | |||
area_emb = self.embedding_area(area_idx) | |||
return torch.cat((gender_emb, age_emb, occupation_emb, area_emb), 1) |
@@ -0,0 +1,62 @@ | |||
import os | |||
import torch | |||
import pickle | |||
from MeLU import MeLU | |||
from options import config | |||
def selection(melu, master_path, topk): | |||
if not os.path.exists("{}/scores/".format(master_path)): | |||
os.mkdir("{}/scores/".format(master_path)) | |||
if config['use_cuda']: | |||
melu.cuda() | |||
melu.eval() | |||
target_state = 'warm_state' | |||
dataset_size = int(len(os.listdir("{}/{}".format(master_path, target_state))) / 4) | |||
grad_norms = {} | |||
for j in list(range(dataset_size)): | |||
support_xs = pickle.load(open("{}/{}/supp_x_{}.pkl".format(master_path, target_state, j), "rb")) | |||
support_ys = pickle.load(open("{}/{}/supp_y_{}.pkl".format(master_path, target_state, j), "rb")) | |||
item_ids = [] | |||
with open("{}/log/{}/supp_x_{}_u_m_ids.txt".format(master_path, target_state, j), "r") as f: | |||
for line in f.readlines(): | |||
item_id = line.strip().split()[1] | |||
item_ids.append(item_id) | |||
for support_x, support_y, item_id in zip(support_xs, support_ys, item_ids): | |||
support_x = support_x.view(1, -1) | |||
support_y = support_y.view(1, -1) | |||
norm = melu.get_weight_avg_norm(support_x, support_y, config['inner']) | |||
try: | |||
grad_norms[item_id]['discriminative_value'] += norm.item() | |||
grad_norms[item_id]['popularity_value'] += 1 | |||
except: | |||
grad_norms[item_id] = { | |||
'discriminative_value': norm.item(), | |||
'popularity_value': 1 | |||
} | |||
d_value_max = 0 | |||
p_value_max = 0 | |||
for item_id in grad_norms.keys(): | |||
grad_norms[item_id]['discriminative_value'] /= grad_norms[item_id]['popularity_value'] | |||
if grad_norms[item_id]['discriminative_value'] > d_value_max: | |||
d_value_max = grad_norms[item_id]['discriminative_value'] | |||
if grad_norms[item_id]['popularity_value'] > p_value_max: | |||
p_value_max = grad_norms[item_id]['popularity_value'] | |||
for item_id in grad_norms.keys(): | |||
grad_norms[item_id]['discriminative_value'] /= float(d_value_max) | |||
grad_norms[item_id]['popularity_value'] /= float(p_value_max) | |||
grad_norms[item_id]['final_score'] = grad_norms[item_id]['discriminative_value'] * grad_norms[item_id]['popularity_value'] | |||
movie_info = {} | |||
with open("./movielens/ml-1m/movies_extrainfos.dat", encoding="utf-8") as f: | |||
for line in f.readlines(): | |||
tmp = line.strip().split("::") | |||
movie_info[tmp[0]] = "{} ({})".format(tmp[1], tmp[2]) | |||
evidence_candidates = [] | |||
for item_id, value in list(sorted(grad_norms.items(), key=lambda x: x[1]['final_score'], reverse=True))[:topk]: | |||
evidence_candidates.append((movie_info[item_id], value['final_score'])) | |||
return evidence_candidates |
@@ -0,0 +1,26 @@ | |||
import torch | |||
import pickle | |||
def fast_adapt( | |||
learn, | |||
adaptation_data, | |||
evaluation_data, | |||
adaptation_labels, | |||
evaluation_labels, | |||
adaptation_steps, | |||
get_predictions = False): | |||
for step in range(adaptation_steps): | |||
temp = learn(adaptation_data) | |||
train_error = torch.nn.functional.mse_loss(temp.view(-1), adaptation_labels) | |||
learn.adapt(train_error) | |||
predictions = learn(evaluation_data) | |||
# loss = torch.nn.MSELoss(reduction='mean') | |||
# valid_error = loss(predictions, evaluation_labels) | |||
valid_error = torch.nn.functional.mse_loss(predictions.view(-1),evaluation_labels) | |||
if get_predictions: | |||
return valid_error,predictions | |||
return valid_error |
@@ -0,0 +1,173 @@ | |||
import os | |||
import torch | |||
import pickle | |||
from MeLU import MeLU | |||
from options import config | |||
from model_training import training | |||
from data_generation import generate | |||
from evidence_candidate import selection | |||
from model_test import test | |||
from embedding_module import EmbeddingModule | |||
import learn2learn as l2l | |||
from embeddings import item, user | |||
import random | |||
import numpy as np | |||
from learnToLearnTest import test | |||
from fast_adapt import fast_adapt | |||
# DATA GENERATION | |||
print("DATA GENERATION PHASE") | |||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" | |||
os.environ["CUDA_VISIBLE_DEVICES"] = "1" | |||
master_path= "/media/external_10TB/10TB/maheri/melu_data5" | |||
if not os.path.exists("{}/".format(master_path)): | |||
os.mkdir("{}/".format(master_path)) | |||
# preparing dataset. It needs about 22GB of your hard disk space. | |||
generate(master_path) | |||
# TRAINING | |||
print("TRAINING PHASE") | |||
embedding_dim = config['embedding_dim'] | |||
fc1_in_dim = config['embedding_dim'] * 8 | |||
fc2_in_dim = config['first_fc_hidden_dim'] | |||
fc2_out_dim = config['second_fc_hidden_dim'] | |||
use_cuda = config['use_cuda'] | |||
emb = EmbeddingModule(config).cuda() | |||
fc1 = torch.nn.Linear(fc1_in_dim, fc2_in_dim) | |||
fc2 = torch.nn.Linear(fc2_in_dim, fc2_out_dim) | |||
linear_out = torch.nn.Linear(fc2_out_dim, 1) | |||
head = torch.nn.Sequential(fc1,fc2,linear_out) | |||
# META LEARNING | |||
print("META LEARNING PHASE") | |||
head = l2l.algorithms.MetaSGD(head, lr=config['local_lr']) | |||
head.cuda() | |||
# Setup optimization | |||
print("SETUP OPTIMIZATION PHASE") | |||
all_parameters = list(emb.parameters()) + list(head.parameters()) | |||
optimizer = torch.optim.Adam(all_parameters, lr=config['lr']) | |||
# loss = torch.nn.MSELoss(reduction='mean') | |||
# Load training dataset. | |||
print("LOAD DATASET PHASE") | |||
training_set_size = int(len(os.listdir("{}/warm_state".format(master_path))) / 4) | |||
supp_xs_s = [] | |||
supp_ys_s = [] | |||
query_xs_s = [] | |||
query_ys_s = [] | |||
for idx in range(training_set_size): | |||
supp_xs_s.append(pickle.load(open("{}/warm_state/supp_x_{}.pkl".format(master_path, idx), "rb"))) | |||
supp_ys_s.append(pickle.load(open("{}/warm_state/supp_y_{}.pkl".format(master_path, idx), "rb"))) | |||
query_xs_s.append(pickle.load(open("{}/warm_state/query_x_{}.pkl".format(master_path, idx), "rb"))) | |||
query_ys_s.append(pickle.load(open("{}/warm_state/query_y_{}.pkl".format(master_path, idx), "rb"))) | |||
total_dataset = list(zip(supp_xs_s, supp_ys_s, query_xs_s, query_ys_s)) | |||
del(supp_xs_s, supp_ys_s, query_xs_s, query_ys_s) | |||
training_set_size = len(total_dataset) | |||
batch_size = config['batch_size'] | |||
print("\n\n\n") | |||
for iteration in range(config['num_epoch']): | |||
random.shuffle(total_dataset) | |||
num_batch = int(training_set_size / batch_size) | |||
a, b, c, d = zip(*total_dataset) | |||
for i in range(num_batch): | |||
optimizer.zero_grad() | |||
meta_train_error = 0.0 | |||
meta_train_accuracy = 0.0 | |||
meta_valid_error = 0.0 | |||
meta_valid_accuracy = 0.0 | |||
meta_test_error = 0.0 | |||
meta_test_accuracy = 0.0 | |||
print("EPOCH: ", iteration, " BATCH: ", i) | |||
supp_xs = list(a[batch_size * i:batch_size * (i + 1)]) | |||
supp_ys = list(b[batch_size * i:batch_size * (i + 1)]) | |||
query_xs = list(c[batch_size * i:batch_size * (i + 1)]) | |||
query_ys = list(d[batch_size * i:batch_size * (i + 1)]) | |||
batch_sz = len(supp_xs) | |||
for j in range(batch_size): | |||
supp_xs[j] = supp_xs[j].cuda() | |||
supp_ys[j] = supp_ys[j].cuda() | |||
query_xs[j] = query_xs[j].cuda() | |||
query_ys[j] = query_ys[j].cuda() | |||
for task in range(batch_sz): | |||
# print("EPOCH: ", iteration," BATCH: ",i, "TASK: ",task) | |||
# Compute meta-training loss | |||
learner = head.clone() | |||
temp_sxs = emb(supp_xs[task]) | |||
temp_qxs = emb(query_xs[task]) | |||
evaluation_error = fast_adapt(learner, | |||
temp_sxs, | |||
temp_qxs, | |||
supp_ys[task], | |||
query_ys[task], | |||
config['inner'] | |||
) | |||
evaluation_error.backward() | |||
meta_train_error += evaluation_error.item() | |||
# Print some metrics | |||
print('Iteration', iteration) | |||
print('Meta Train Error', meta_train_error / batch_sz) | |||
# print('Meta Train Accuracy', meta_train_accuracy / batch_sz) | |||
# print('Meta Valid Error', meta_valid_error / batch_sz) | |||
# print('Meta Valid Accuracy', meta_valid_accuracy / batch_sz) | |||
# print('Meta Test Error', meta_test_error / batch_sz) | |||
# print('Meta Test Accuracy', meta_test_accuracy / batch_sz) | |||
# Average the accumulated gradients and optimize | |||
for p in all_parameters: | |||
p.grad.data.mul_(1.0 / batch_sz) | |||
optimizer.step() | |||
print("===============================================\n") | |||
# save model | |||
final_model = torch.nn.Sequential(emb,head) | |||
torch.save(final_model.state_dict(), master_path + "/models_sgd.pkl") | |||
# testing | |||
print("start of test phase") | |||
for test_state in ['warm_state', 'user_cold_state', 'item_cold_state', 'user_and_item_cold_state']: | |||
test_dataset = None | |||
test_set_size = int(len(os.listdir("{}/{}".format(master_path, test_state))) / 4) | |||
supp_xs_s = [] | |||
supp_ys_s = [] | |||
query_xs_s = [] | |||
query_ys_s = [] | |||
for idx in range(test_set_size): | |||
supp_xs_s.append(pickle.load(open("{}/{}/supp_x_{}.pkl".format(master_path, test_state, idx), "rb"))) | |||
supp_ys_s.append(pickle.load(open("{}/{}/supp_y_{}.pkl".format(master_path, test_state, idx), "rb"))) | |||
query_xs_s.append(pickle.load(open("{}/{}/query_x_{}.pkl".format(master_path, test_state, idx), "rb"))) | |||
query_ys_s.append(pickle.load(open("{}/{}/query_y_{}.pkl".format(master_path, test_state, idx), "rb"))) | |||
test_dataset = list(zip(supp_xs_s, supp_ys_s, query_xs_s, query_ys_s)) | |||
del (supp_xs_s, supp_ys_s, query_xs_s, query_ys_s) | |||
print("===================== " + test_state + " =====================") | |||
test(emb,head, test_dataset, batch_size=config['batch_size'], num_epoch=config['num_epoch']) | |||
print("===================================================\n\n\n") | |||
@@ -0,0 +1,72 @@ | |||
import os | |||
import torch | |||
import pickle | |||
import random | |||
from options import config, states | |||
from torch.nn import functional as F | |||
from torch.nn import L1Loss | |||
import matchzoo as mz | |||
import numpy as np | |||
from fast_adapt import fast_adapt | |||
def test(embedding,head, total_dataset, batch_size, num_epoch): | |||
test_set_size = len(total_dataset) | |||
random.shuffle(total_dataset) | |||
a, b, c, d = zip(*total_dataset) | |||
losses_q = [] | |||
ndcgs1 = [] | |||
ndcgs3 = [] | |||
for iterator in range(test_set_size): | |||
try: | |||
supp_xs = a[iterator].cuda() | |||
supp_ys = b[iterator].cuda() | |||
query_xs = c[iterator].cuda() | |||
query_ys = d[iterator].cuda() | |||
except IndexError: | |||
print("index error in test method") | |||
continue | |||
num_local_update = config['inner'] | |||
learner = head.clone() | |||
temp_sxs = embedding(supp_xs) | |||
temp_qxs = embedding(query_xs) | |||
evaluation_error,predictions = fast_adapt(learner, | |||
temp_sxs, | |||
temp_qxs, | |||
supp_ys, | |||
query_ys, | |||
config['inner'], | |||
get_predictions=True | |||
) | |||
l1 = L1Loss(reduction='mean') | |||
loss_q = l1(predictions.view(-1), query_ys) | |||
# print("testing - iterator:{} - l1:{} ".format(iterator,loss_q)) | |||
losses_q.append(float(loss_q)) | |||
y_true = query_ys.cpu().detach().numpy() | |||
y_pred = predictions.cpu().detach().numpy() | |||
ndcgs1.append(float(mz.metrics.NormalizedDiscountedCumulativeGain(k=1)(y_true, y_pred))) | |||
ndcgs3.append(float(mz.metrics.NormalizedDiscountedCumulativeGain(k=3)(y_true, y_pred))) | |||
del supp_xs, supp_ys, query_xs, query_ys, predictions, y_true, y_pred, loss_q | |||
torch.cuda.empty_cache() | |||
# calculate metrics | |||
# print("======================================") | |||
# losses_q = torch.stack(losses_q).mean(0) | |||
losses_q = np.array(losses_q).mean() | |||
print("mean of mse: ", losses_q) | |||
# print("======================================") | |||
n1 = np.array(ndcgs1).mean() | |||
print("nDCG1: ", n1) | |||
n3 = np.array(ndcgs3).mean() | |||
print("nDCG3: ", n3) | |||
@@ -0,0 +1,7 @@ | |||
1 | |||
18 | |||
25 | |||
35 | |||
45 | |||
50 | |||
56 |
@@ -0,0 +1,2 @@ | |||
M | |||
F |
@@ -0,0 +1,25 @@ | |||
Animation | |||
Family | |||
Romance | |||
nan | |||
Documentary | |||
Action | |||
Music | |||
Horror | |||
Comedy | |||
Adventure | |||
History | |||
War | |||
Short | |||
Film-Noir | |||
Adult | |||
Crime | |||
Drama | |||
Thriller | |||
Mystery | |||
Sport | |||
Musical | |||
Sci-Fi | |||
Biography | |||
Fantasy | |||
Western |
@@ -0,0 +1,21 @@ | |||
0 | |||
1 | |||
2 | |||
3 | |||
4 | |||
5 | |||
6 | |||
7 | |||
8 | |||
9 | |||
10 | |||
11 | |||
12 | |||
13 | |||
14 | |||
15 | |||
16 | |||
17 | |||
18 | |||
19 | |||
20 |
@@ -0,0 +1,6 @@ | |||
PG-13 | |||
UNRATED | |||
NC-17 | |||
PG | |||
G | |||
R |