| @@ -1,4 +1,4 @@ | |||
| #PBS -N track_17_on_20_ada_12 | |||
| #PBS -N track_17_on_20_ada_4 | |||
| #PBS -m abe | |||
| #PBS -M [email protected] | |||
| #PBS -l nodes=1:ppn=1:gpus=1 | |||
| @@ -15,4 +15,4 @@ cd /home/abdollahpour.ce.sharif/ByteTrack | |||
| python tools/track.py -t metamot -f exps/example/metamot/yolox_x_mot17_on_mot20.py -d 1 -b 1 -c /home/abdollahpour.ce.sharif/ByteTrack/meta_experiments/train_17_on_20_resume2/best_ckpt.pth.tar --local_rank 0 -expn track_17_on_20_ada_12 --mot20 --adaptation_period 12 | |||
| python tools/track.py -t metamot -f exps/example/metamot/yolox_x_mot17_on_mot20.py -d 1 -b 1 -c /home/abdollahpour.ce.sharif/ByteTrack/meta_experiments/train_17_on_20_resume2/best_ckpt.pth.tar --local_rank 0 -expn track_17_on_20_ada_4 --mot20 --adaptation_period 4 --fp16 | |||
| @@ -13,4 +13,4 @@ cd /home/abdollahpour.ce.sharif/ByteTrack | |||
| python tools/track.py -t metamot -f exps/example/metamot/yolox_x_mot17_on_mot20.py -d 1 -b 1 -c /home/abdollahpour.ce.sharif/ByteTrack/meta_experiments/train_17_on_20_resume2/best_ckpt.pth.tar --local_rank 0 -expn track_17_on_20_ada_4_with_GT --mot20 --adaptation_period 4 --fp16 --use_existing_files | |||
| python tools/track.py -t metamot -f exps/example/metamot/yolox_x_mot17_on_mot20.py -d 1 -b 1 -c /home/abdollahpour.ce.sharif/ByteTrack/meta_experiments/train_17_on_20_resume2/best_ckpt.pth.tar --local_rank 0 -expn track_17_on_20_ada_4_with_GT --mot20 --adaptation_period 4 --fp16 | |||
| @@ -138,11 +138,11 @@ class MetaTrainer: | |||
| self.optimizer.zero_grad() | |||
| logger.info("loss Norm: {} , scale {}".format(torch.norm(loss), self.scaler.get_scale())) | |||
| loss = self.scaler.scale(loss) | |||
| logger.info("loss Norm: {} , scale {}".format(torch.norm(loss), self.scaler.get_scale())) | |||
| # self.scaler.scale(loss).backward() | |||
| loss.backward() | |||
| # logger.info("loss Norm: {} , scale {}".format(torch.norm(loss), self.scaler.get_scale())) | |||
| # loss = self.scaler.scale(loss) | |||
| # logger.info("loss Norm: {} , scale {}".format(torch.norm(loss), self.scaler.get_scale())) | |||
| self.scaler.scale(loss).backward() | |||
| # loss.backward() | |||
| self.scaler.step(self.optimizer) | |||
| self.scaler.update() | |||
| @@ -112,7 +112,7 @@ class MOTEvaluator: | |||
| else: | |||
| learner = model | |||
| # TODO half to amp_test | |||
| self.scaler = torch.cuda.amp.GradScaler(enabled=half,init_scale=8192) | |||
| self.scaler = torch.cuda.amp.GradScaler(enabled=half, init_scale=2730) | |||
| learner = learner.eval() | |||
| self.amp_training = False | |||
| @@ -63,7 +63,7 @@ class MetaExp(BaseMetaExp): | |||
| # ----------------- Meta-learning ------------------ # | |||
| self.first_order = True | |||
| self.inner_lr = 1e-6 | |||
| # self.inner_lr = 1e-10 | |||
| # self.inner_lr = 1e-8 | |||
| def get_model(self): | |||
| from yolox.models import YOLOPAFPN, YOLOX, YOLOXHead | |||