#PBS -N track_17_on_20_ada_12 | |||||
#PBS -N track_17_on_20_ada_4 | |||||
#PBS -m abe | #PBS -m abe | ||||
#PBS -M [email protected] | #PBS -M [email protected] | ||||
#PBS -l nodes=1:ppn=1:gpus=1 | #PBS -l nodes=1:ppn=1:gpus=1 | ||||
python tools/track.py -t metamot -f exps/example/metamot/yolox_x_mot17_on_mot20.py -d 1 -b 1 -c /home/abdollahpour.ce.sharif/ByteTrack/meta_experiments/train_17_on_20_resume2/best_ckpt.pth.tar --local_rank 0 -expn track_17_on_20_ada_12 --mot20 --adaptation_period 12 | |||||
python tools/track.py -t metamot -f exps/example/metamot/yolox_x_mot17_on_mot20.py -d 1 -b 1 -c /home/abdollahpour.ce.sharif/ByteTrack/meta_experiments/train_17_on_20_resume2/best_ckpt.pth.tar --local_rank 0 -expn track_17_on_20_ada_4 --mot20 --adaptation_period 4 --fp16 |
python tools/track.py -t metamot -f exps/example/metamot/yolox_x_mot17_on_mot20.py -d 1 -b 1 -c /home/abdollahpour.ce.sharif/ByteTrack/meta_experiments/train_17_on_20_resume2/best_ckpt.pth.tar --local_rank 0 -expn track_17_on_20_ada_4_with_GT --mot20 --adaptation_period 4 --fp16 --use_existing_files | |||||
python tools/track.py -t metamot -f exps/example/metamot/yolox_x_mot17_on_mot20.py -d 1 -b 1 -c /home/abdollahpour.ce.sharif/ByteTrack/meta_experiments/train_17_on_20_resume2/best_ckpt.pth.tar --local_rank 0 -expn track_17_on_20_ada_4_with_GT --mot20 --adaptation_period 4 --fp16 |
self.optimizer.zero_grad() | self.optimizer.zero_grad() | ||||
logger.info("loss Norm: {} , scale {}".format(torch.norm(loss), self.scaler.get_scale())) | |||||
loss = self.scaler.scale(loss) | |||||
logger.info("loss Norm: {} , scale {}".format(torch.norm(loss), self.scaler.get_scale())) | |||||
# self.scaler.scale(loss).backward() | |||||
loss.backward() | |||||
# logger.info("loss Norm: {} , scale {}".format(torch.norm(loss), self.scaler.get_scale())) | |||||
# loss = self.scaler.scale(loss) | |||||
# logger.info("loss Norm: {} , scale {}".format(torch.norm(loss), self.scaler.get_scale())) | |||||
self.scaler.scale(loss).backward() | |||||
# loss.backward() | |||||
self.scaler.step(self.optimizer) | self.scaler.step(self.optimizer) | ||||
self.scaler.update() | self.scaler.update() | ||||
else: | else: | ||||
learner = model | learner = model | ||||
# TODO half to amp_test | # TODO half to amp_test | ||||
self.scaler = torch.cuda.amp.GradScaler(enabled=half,init_scale=8192) | |||||
self.scaler = torch.cuda.amp.GradScaler(enabled=half, init_scale=2730) | |||||
learner = learner.eval() | learner = learner.eval() | ||||
self.amp_training = False | self.amp_training = False |
# ----------------- Meta-learning ------------------ # | # ----------------- Meta-learning ------------------ # | ||||
self.first_order = True | self.first_order = True | ||||
self.inner_lr = 1e-6 | self.inner_lr = 1e-6 | ||||
# self.inner_lr = 1e-10 | |||||
# self.inner_lr = 1e-8 | |||||
def get_model(self): | def get_model(self): | ||||
from yolox.models import YOLOPAFPN, YOLOX, YOLOXHead | from yolox.models import YOLOPAFPN, YOLOX, YOLOXHead |