| @@ -29,5 +29,3 @@ for i=1:m | |||
| LogMsg(sprintf('DumpDataset for %s%s iter %d/%d into %s%s.', dataFilePath, dataFileName, iter, i, outPath, outFile)); | |||
| end | |||
| %fprintf('Completed DumpDataset.\n'); | |||
| @@ -682,6 +682,7 @@ function [ rand_score, purity, p_triads, missing_nodes_mapping, removed_nodes] = | |||
| % cases we are using the GED as the main measure | |||
| fprintf('^%s', newPredictedGraph) | |||
| %remap the original data so that the known nodes match the | |||
| %predicted data and the missing nodes match the predicted | |||
| % nodes created from each cluster | |||
| @@ -712,8 +713,7 @@ function [ rand_score, purity, p_triads, missing_nodes_mapping, removed_nodes] = | |||
| small_data4 = newPredictedGraph; | |||
| small_data4(indices_to_remove,:) = []; | |||
| small_data4(:,indices_to_remove) = []; | |||
| %%% Sigal 27.1.13 - save reduce graphs for GED | |||
| Sigal 27.1.13 - save reduce graphs for GED | |||
| if dumpSmallFlag == 1 | |||
| saveSmallData(dumpSmallDataPath, dataFileName, iter, affinity_calculation_type, withAttrWeight, num_missing_nodes, small_data, 1); | |||
| saveSmallData(dumpSmallDataPath, dataFileName, iter, affinity_calculation_type, withAttrWeight, num_missing_nodes, small_data2, 2); | |||
| @@ -767,8 +767,7 @@ function [ rand_score, purity, p_triads, missing_nodes_mapping, removed_nodes] = | |||
| small_data2(:,indices_to_remove) = []; | |||
| %fprintf('&%s', small_data2) | |||
| %fprintf('&&%s', small_data) | |||
| %%% Sigal 27.1.13 - save reduce graphs for GED | |||
| Sigal 27.1.13 - save reduce graphs for GED | |||
| withAttrWeight = origWithAttrWeight+1000*(1-percent_known_placeholders)*10; | |||
| if dumpSmallFlag == 1 | |||
| saveSmallData(dumpSmallDataPath, dataFileName, iter, affinity_calculation_type, withAttrWeight, num_missing_nodes, small_data, 1); | |||
| @@ -930,6 +929,7 @@ end %main function | |||
| % sigal - 29.10.13 | |||
| % calc only PHs affinity | |||
| function [affinity] = CalcPHsAffinity( data, affType, actual_graph_size, num_missing_nodes, num_attr_nodes, attWeight, addMissingAtt) | |||
| global affinity_calculation_shortest_path; | |||
| global affinity_calculation_euclid; | |||
| @@ -1320,7 +1320,7 @@ end % function BuildTrueClustering | |||
| function saveSmallData(dumpSmallDataPath, dataFileName, iter, affinity_type, withAttr, missNodes, small_data, i) | |||
| %%% Sigal 24.1.13 - TODO | |||
| Sigal 24.1.13 - TODO | |||
| outFile = sprintf('%s_%d_%d_%d_%d_small_data_%d', dataFileName, iter, missNodes, affinity_type, withAttr, i); | |||
| if affinity_type == 9 % save instead a dummy size (1) and the best_alg | |||
| SaveIntMatrixToFile(strcat(dumpSmallDataPath, outFile,'_edges.txt'), small_data, 1); | |||
| @@ -1411,4 +1411,3 @@ function [sumPurity] = CalcSumPurity(clusteringResults, indices) | |||
| end | |||
| sumPurity = sum(crossPurity,2); | |||
| end % function CalcSumPurity | |||
| @@ -1,6 +1,6 @@ | |||
| % Map attribute to categories | |||
| % Use 0 for null/no value, 1 for unknown/private value (if exist) and then real values | |||
| function [outAttributes, attUpperRange, selectedAttr, attStat] = PrepareAttributes5(dataFilePath, dataFileName, numNodes, expectedAttrCols, maxAttStat, inSelectedAttr, debug, debugPath) | |||
| Map attribute to categories | |||
| Use 0 for null/no value, 1 for unknown/private value (if exist) and then real values | |||
| function [outAttributes, attUpperRange, selectedAttr, attStat] = PrepareAttributes5(dataFilePath, dataFileName, expectedAttrCols, maxAttStat, inSelectedAttr, debug, debugPath) | |||
| outNoneValue = 0; | |||
| @@ -45,8 +45,8 @@ load(strcat(dataFilePath, dataFileName), 'attributes'); | |||
| m = size(attributes,1); % num nodes/lines | |||
| n = size(attributes,2); % num attributes/cols | |||
| if n ~= expectedAttrCols || m ~= numNodes | |||
| fprintf('PrepareAttributes - Invalid size: expecting (%dx%d), got (%dx%d)\n',numNodes,expectedAttrCols,m,n); | |||
| if n ~= expectedAttrCols | |||
| fprintf('PrepareAttributes - Invalid size: expecting (%d), got (%dx%d)\n',expectedAttrCols,m,n); | |||
| return; | |||
| end | |||
| @@ -79,7 +79,7 @@ if selectedAttr(countryCol) == 1 | |||
| for i=1:maxCountry | |||
| indices = (new_values==i); | |||
| count = sum(indices); | |||
| if count/numNodes > maxAttStat | |||
| if count/m > maxAttStat | |||
| new_values(indices) = 0; | |||
| end | |||
| end | |||
| @@ -108,7 +108,7 @@ end | |||
| % calculate statistics and filter according to zero & maxAttStat | |||
| attStat = zeros(1,n); | |||
| for a = 1:n | |||
| attStat(a) = nnz(outAttributes(:,a))/numNodes; | |||
| attStat(a) = nnz(outAttributes(:,a))/m; | |||
| if attStat(a) == 0 | |||
| selectedAttr(a)=0; | |||
| elseif selectedAttr(a)>0 && attStat(a) > maxAttStat && a>1 % don't filter country | |||
| @@ -48,6 +48,7 @@ function [ data, attData, missing_nodes_mapping ] = RemoveRandomNodesWithImages( | |||
| for i = missing_nodes_all_neighbors | |||
| neighbors = find(data(i,:)); | |||
| missing_neighbors = intersect(neighbors, missing_nodes_list); | |||
| missing_neighbors = sort(missing_neighbors, 'descend'); | |||
| for curr_missing_neighbor = missing_neighbors | |||
| if data(i,curr_missing_neighbor) == 1 | |||
| @@ -103,6 +104,213 @@ function [ data, attData, missing_nodes_mapping ] = RemoveRandomNodesWithImages( | |||
| end %function RemoveRandomNodes3 | |||
| %sigal - move old implementation to function | |||
| function [missing_nodes] = ChooseMissingNodes(num_nodes_to_remove, data, attData, totalAttNum, numAttPerPH, missing_nodes_mapping, numImagesProfiles) | |||
| missing_nodes_all_neighbors = zeros(1, size(data,2)); | |||
| %randomize a list of nodes to remove and sort it | |||
| if size(missing_nodes_mapping,1)> 0 | |||
| %Sigal 23.1.14 - second row is the profile mapping | |||
| missing_nodes = missing_nodes_mapping(1:2,:); %%sort(missing_nodes_mapping(1,:) , 2, 'descend'); | |||
| %find all missing node neighbors | |||
| for curr_missing_node = missing_nodes(1,:) % first row is the removed nodes | |||
| missing_nodes_all_neighbors = missing_nodes_all_neighbors | data(curr_missing_node,:); | |||
| missing_nodes_all_neighbors(1,curr_missing_node)=1; | |||
| end | |||
| else | |||
| missing_nodes = []; | |||
| end | |||
| % outlier1 - nodes with only one edge | |||
| numEdges = sum(data,1); | |||
| invalidNodes1a = (numEdges==1); %%numEdges<3); %%(numEdges==1); | |||
| missing_nodes_all_neighbors(1,invalidNodes1a) = 1; | |||
| %invalidNodes1b = (numEdges>7); %% 6.13 (mem issues) use 7 | |||
| %invalidNodes1b = (numEdges>15); %%25); %%(numEdges==1); %% sigal - 6.2.13 max=15 (sarit) | |||
| %invalidNodes1b = (numEdges>8); %%15); %% sigal/sarit - 9.12.13 max=8 | |||
| %missing_nodes_all_neighbors(1,invalidNodes1b) = 1; | |||
| % outlier2 - nodes with less than numAttPerPH attributes | |||
| % sigal 31.1.14 - support remove without attributes | |||
| if totalAttNum > 0 && numAttPerPH > 0 | |||
| numAttr = sum(attData,2)'; | |||
| invalidNodes2 = (numAttr<numAttPerPH); | |||
| missing_nodes_all_neighbors(1,invalidNodes2) = 1; | |||
| else | |||
| invalidNodes2 = zeros(1,size(invalidNodes1a,2)); | |||
| end | |||
| % outlier statistics | |||
| count = nnz(invalidNodes1a|invalidNodes2); | |||
| if count*1.5 > size(data,2) | |||
| fprintf('RemoveRandomNodes2: too many outliers nodes %d.\n',count); | |||
| end | |||
| %sigal - 23.1.14 - choose image profile | |||
| imagesProfiles = 1:1:numImagesProfiles; | |||
| if size(missing_nodes,1)> 0 | |||
| usedProfiles = missing_nodes(2,:); | |||
| imagesProfiles(usedProfiles)=[]; | |||
| end | |||
| for i=1:num_nodes_to_remove | |||
| valid_nodes = find(missing_nodes_all_neighbors~=1); | |||
| if(size(valid_nodes,2) < 1) | |||
| fprintf('Full Graph') | |||
| end | |||
| inx = ceil(rand(1)*size(valid_nodes,2)); | |||
| node = valid_nodes(inx); | |||
| %sigal - 23.1.14 - choose image profile | |||
| profile = ceil(rand(1)*size(imagesProfiles,2)); | |||
| newNode = [node;imagesProfiles(profile)]; | |||
| imagesProfiles(profile) = []; | |||
| % add selected node to missing_nodes list and update the all neighbors list | |||
| missing_nodes = [missing_nodes newNode]; | |||
| missing_nodes_all_neighbors(1,node)=1; | |||
| missing_nodes_all_neighbors = missing_nodes_all_neighbors | data(node,:); | |||
| end | |||
| end %ChooseMissingNodes | |||
| % sigal - append col & row for the placeholder | |||
| function [data] = ExpandDataByOne(data, friend, non_neighbors_distance) | |||
| new_col = ones(size(data, 1), 1) * non_neighbors_distance; | |||
| new_col(friend) = 1; | |||
| data = [data new_col]; | |||
| new_row = ones(1,size(data, 2)) * non_neighbors_distance; | |||
| new_row(friend) = 1; | |||
| data = [data; new_row]; | |||
| data(size(data, 1), size(data,2)) = 0; | |||
| end %ExpandDataByOne | |||
| % sigal - append row for the placeholder | |||
| function [attData] = ExpandAttByOne(attData, orgNode, non_neighbors_distance, totalAttNum, numAttPerPH) | |||
| if totalAttNum>0 && numAttPerPH>0 | |||
| attIndices = find(attData(orgNode, :)==1); | |||
| while size(attIndices,2) > numAttPerPH | |||
| inx = ceil(rand(1)*size(attIndices,2)); | |||
| attIndices(:,inx) = []; | |||
| end | |||
| else | |||
| attIndices=[]; | |||
| end | |||
| new_row = ones(1,size(attData, 2)) * non_neighbors_distance; | |||
| for i=1:size(attIndices,2) | |||
| new_row(i)=1; | |||
| end | |||
| attData = [attData; new_row]; | |||
| end %ExpandAttByOne | |||
| function [ data, attData, missing_nodes_mapping ] = RemoveRandomNodesWithImages( data, attData, totalAttNum, num_missing_nodes, missing_nodes_mapping, numImagesProfiles, non_neighbors_distance, missingNodesInput ) | |||
| %RemoveRandomNodes Remove num_missing_nodes from data. If some nodes are | |||
| %removed already, provide missing_nodes_mapping | |||
| % Detailed explanation goes here | |||
| if nargin < 7 | |||
| non_neighbors_distance = 0; | |||
| end | |||
| if nargin >= 8 % i.e. getting missingNodesInput | |||
| missing_nodes = missingNodesInput; | |||
| else | |||
| %%data_orig = data; | |||
| numAttPerPH = 0; | |||
| % if the mapping is larger than the number of nodes we want to remove, empty | |||
| % it and start a new mapping. This can happen if we finished looping over | |||
| % the number of missing nodes and started a new iteration of an outer loop. | |||
| if size(missing_nodes_mapping,2) > num_missing_nodes | |||
| missing_nodes_mapping = []; | |||
| num_nodes_to_remove = num_missing_nodes; | |||
| else | |||
| num_nodes_to_remove = num_missing_nodes - size(missing_nodes_mapping,2); | |||
| end | |||
| % randomly choose missing nodes | |||
| %missing_nodes = ChooseMissingNodes_old(num_nodes_to_remove, data, missing_nodes_mapping, non_neighbors_distance); | |||
| missing_nodes = ChooseMissingNodes(num_nodes_to_remove, data, attData, totalAttNum, numAttPerPH, missing_nodes_mapping, numImagesProfiles); | |||
| %sort the list and create a list of the new nodes that each missing node is mapped to - each link | |||
| %to a missing node is replaced by a link to a new, "UNK" node | |||
| %Sigal 23.1.14 - missing_nodes is now matrix with two rows: | |||
| % first the removed node and second the selected profile) | |||
| % no need to call unique as validation is already done in ChooseMissingNodes | |||
| %missing_nodes = sort( unique(missing_nodes), 'descend'); | |||
| %missing_nodes = sort( missing_nodes , 2, 'descend'); | |||
| missing_nodes_mapping = missing_nodes; | |||
| missing_nodes_list = sort(missing_nodes(1,:),'descend'); | |||
| %replace each link to a missing node with a link to a new node | |||
| %find all missing node neighbors | |||
| missing_nodes_all_neighbors = zeros(1, size(data,2)); | |||
| for curr_nissing_node = missing_nodes_list | |||
| missing_nodes_all_neighbors = missing_nodes_all_neighbors | data(curr_nissing_node,:); | |||
| end | |||
| missing_nodes_all_neighbors = find(missing_nodes_all_neighbors); | |||
| %for each node in missing_nodes_all_neighbors add edges to placeholder | |||
| for i = missing_nodes_all_neighbors | |||
| neighbors = find(data(i,:)); | |||
| missing_neighbors = intersect(neighbors, missing_nodes_list); | |||
| missing_neighbors = sort(missing_neighbors, 'descend'); | |||
| for curr_missing_neighbor = missing_neighbors | |||
| if data(i,curr_missing_neighbor) == 1 | |||
| % append col & row for the placeholder | |||
| data = ExpandDataByOne(data, i, non_neighbors_distance); | |||
| % sigal 31.1.14 - support remove without attributes | |||
| if totalAttNum > 0 | |||
| attData = ExpandAttByOne(attData, curr_missing_neighbor, non_neighbors_distance, totalAttNum, numAttPerPH); | |||
| end | |||
| %add the new UNK node to the missing nodes mapping j is the index of the missing node | |||
| %look for the first zero in column j of the missing nodes mapping and put the new node | |||
| %index there | |||
| added_node = 0; | |||
| %add it in the first position which equals zero | |||
| %sigal 23.1.14 - find index according to actual structure (not sorted) | |||
| j = find( missing_nodes_mapping(1,:) == curr_missing_neighbor, 1); | |||
| for k = 1 : size(missing_nodes_mapping,1) | |||
| if missing_nodes_mapping(k, j) == 0 | |||
| %if we start with 1000 nodes, and we have 5 missing nodes, after | |||
| %adding one node at this point, the size of the graph is 1001. 5 nodes | |||
| %will be removed so the correct index of the new node will be 1001 - 5 = 996. | |||
| %The next one is 997 and so on. | |||
| missing_nodes_mapping(k, j) = size(data,1) - num_missing_nodes; | |||
| added_node = 1; | |||
| break; | |||
| end | |||
| end | |||
| %if all the column is non-zero, add a new row and put it there | |||
| if added_node == 0 | |||
| missing_nodes_mapping = [missing_nodes_mapping; zeros(1, size(missing_nodes_mapping,2))]; | |||
| missing_nodes_mapping(size(missing_nodes_mapping,1), j) = size(data,1) - num_missing_nodes; | |||
| end | |||
| end %if friend | |||
| end %missing_neighbors | |||
| end %missing_nodes_all_neighbors | |||
| end % if getting missingNodesInput | |||
| %remove the missing nodes from the matrix (missing nodes MUST be sorted in descending order!! | |||
| %so that removing one does not affect the index of the others) | |||
| for j = 1:size(missing_nodes_list,2) | |||
| missing_node_idx = missing_nodes_list(j); | |||
| %remove column | |||
| data(:, missing_node_idx) = []; | |||
| %remove row | |||
| data(missing_node_idx, :) = []; | |||
| % sigal 31.1.14 - support remove without attributes | |||
| if totalAttNum > 0 | |||
| attData(missing_node_idx, :) = []; | |||
| end | |||
| end | |||
| end %function RemoveRandomNodes3 | |||
| %sigal - move old implementation to function | |||
| function [missing_nodes] = ChooseMissingNodes(num_nodes_to_remove, data, attData, totalAttNum, numAttPerPH, missing_nodes_mapping, numImagesProfiles) | |||
| missing_nodes_all_neighbors = zeros(1, size(data,2)); | |||
| @@ -125,8 +333,8 @@ function [missing_nodes] = ChooseMissingNodes(num_nodes_to_remove, data, attData | |||
| missing_nodes_all_neighbors(1,invalidNodes1a) = 1; | |||
| %invalidNodes1b = (numEdges>7); %% 6.13 (mem issues) use 7 | |||
| %invalidNodes1b = (numEdges>15); %%25); %%(numEdges==1); %% sigal - 6.2.13 max=15 (sarit) | |||
| invalidNodes1b = (numEdges>8); %%15); %% sigal/sarit - 9.12.13 max=8 | |||
| missing_nodes_all_neighbors(1,invalidNodes1b) = 1; | |||
| %invalidNodes1b = (numEdges>8); %%15); %% sigal/sarit - 9.12.13 max=8 | |||
| %missing_nodes_all_neighbors(1,invalidNodes1b) = 1; | |||
| % outlier2 - nodes with less than numAttPerPH attributes | |||
| % sigal 31.1.14 - support remove without attributes | |||
| if totalAttNum > 0 && numAttPerPH > 0 | |||
| @@ -137,7 +345,7 @@ function [missing_nodes] = ChooseMissingNodes(num_nodes_to_remove, data, attData | |||
| invalidNodes2 = zeros(1,size(invalidNodes1a,2)); | |||
| end | |||
| % outlier statistics | |||
| count = nnz(invalidNodes1a|invalidNodes1b|invalidNodes2); | |||
| count = nnz(invalidNodes1a|invalidNodes2); | |||
| if count*1.5 > size(data,2) | |||
| fprintf('RemoveRandomNodes2: too many outliers nodes %d.\n',count); | |||
| end | |||
| @@ -151,7 +359,12 @@ function [missing_nodes] = ChooseMissingNodes(num_nodes_to_remove, data, attData | |||
| for i=1:num_nodes_to_remove | |||
| valid_nodes = find(missing_nodes_all_neighbors~=1); | |||
| inx = ceil(rand(1)*size(valid_nodes,2)); | |||
| if(size(valid_nodes,2) < 1) | |||
| fprintf('Full Graph') | |||
| end | |||
| inx = ceil(rand(1)*size(valid_nodes,2)); | |||
| node = valid_nodes(inx); | |||
| %sigal - 23.1.14 - choose image profile | |||
| profile = ceil(rand(1)*size(imagesProfiles,2)); | |||
| @@ -196,3 +409,4 @@ function [attData] = ExpandAttByOne(attData, orgNode, non_neighbors_distance, to | |||
| end %ExpandAttByOne | |||
| @@ -1,5 +1,5 @@ | |||
| function [] = RunExpSrv8s(iterStartStr, iterEndStr, netSizeStr, addAttPercStr) | |||
| %function [] = RunExpSrv8s(iterStartStr, iterEndStr, netSizeStr, normF1, normF2, normF3, addAttPercStr) | |||
| function [] = RunExpSrv8s(iterStartStr, iterEndStr, netSizeStr, normF1, normF2, normF3, addAttPercStr) | |||
| function [] = RunExpSrv8s(iterStartStr, iterEndStr, addAttPercStr) | |||
| %affinity calculation types | |||
| % affinity_calculation_shortest_path = 0; | |||
| @@ -51,10 +51,9 @@ percentKnownPHsVec = 1; | |||
| % ds_100k = [20000 25000 50000 75000 100000]; | |||
| % ds_100km = [100001]; | |||
| % ds_Train = [2001 2049]; | |||
| ds_GridTrain = [12]; | |||
| ds_GridTrain = [45]; | |||
| % input netSize | |||
| netSize = str2num(netSizeStr); | |||
| % if find(ds_10k==netSize) | |||
| % ds_str = 'Datasets_10K/'; | |||
| % num_missing_nodes_arr = [10 20 30 50 70 100];%[10 100 150]; | |||
| @@ -83,16 +82,14 @@ netSize = str2num(netSizeStr); | |||
| % fprintf('RunExpSrv8s:Invalid netSize %d.\n',netSize); | |||
| % return; | |||
| % end | |||
| ds_str = 'graph_production/produced_graphs/'; | |||
| num_missing_nodes_arr = [1 2 3]; | |||
| ds_str = 'in/'; | |||
| num_missing_nodes_arr = [2]; | |||
| fprintf('RunExpSrv8s: netSize %d, dataset %s\n',netSize,ds_str); | |||
| rootDir = '../'; | |||
| %rootDir = '/Users/armin/Desktop/DML/projects/graphgenproj/'; %Facebook/'; | |||
| %rootDir = 'D:/__SN_Jan14_FF75/'; %Facebook/'; | |||
| filePrefix = 'testgraph_*'; % 'facebook_sparse_'; % | |||
| netSizes = netSize; %%[2048 4096 5000 8192 10000 16384 32768]; | |||
| %Sigal - 13.2.14 - images data | |||
| imagesDir = strcat(rootDir,'Images/'); | |||
| @@ -107,7 +104,7 @@ imgSimType = 1; %% 0=realData, 1=rand(uniform distribution), 2=randn(normal dist | |||
| datasetDir = strcat(rootDir,ds_str); %'Datasets_10K/'); %'Facebook/Datasets_10K/'); %'Traing_16K/'); %% TODO sigal - change rootDir path before EXE build | |||
| factor_str = sprintf('F%d%d%d_',normFactorVec); | |||
| images_str = sprintf('I%dP%dM%d_',imgSimType,imgSimProbDiff*10,imgMissProb*10); | |||
| results_dir = strcat(datasetDir,'testImg_noTh_',netSizeStr,'/',factor_str,images_str,'Iter_',iterStartStr,iterEndStr,'/'); | |||
| results_dir = strcat(datasetDir,'testImg_noTh_','/',factor_str,images_str,'Iter_',iterStartStr,iterEndStr,'/'); | |||
| fprintf('RunExpSrv8b: results_dir %s\n',results_dir); | |||
| runAlgFlag = 1; | |||
| @@ -139,13 +136,7 @@ LogMsg(sprintf('%s Start RunExpSrv8s RunExperiment (random %d, addMissingAtt %.2 | |||
| % end | |||
| % LogMsg(sprintf('Select %d attributes out of %d ...', sum(attSelected), size(attSelected,2))); | |||
| for nodes = netSizes | |||
| fprintf('----------!!!!%d---------', nodes); | |||
| if size(strfind(filePrefix, 'facebook'),1)>0 | |||
| prefix = sprintf('%s%s%d_%s',datasetDir,filePrefix,nodes,'*.mat'); % '0*.txt.mat'); | |||
| else | |||
| prefix = sprintf('%s%s%d_%s',datasetDir,filePrefix,nodes,'*.txt.mat'); % '0*.txt.mat'); | |||
| end | |||
| prefix = sprintf('%s%s_%s',datasetDir,filePrefix,'*.txt.mat'); % '0*.txt.mat'); | |||
| files = dir(prefix); | |||
| firstIter = 1; | |||
| @@ -155,66 +146,67 @@ for nodes = netSizes | |||
| end | |||
| for i = 1:size(files,1) % loop over the list of networks | |||
| try | |||
| file = files(i).name; | |||
| file = files(i).name; | |||
| if size(strfind(filePrefix, 'facebook'),1)>0 | |||
| LogMsg(sprintf('facebook netwrok, skipping attributes ...')); | |||
| attributes = []; | |||
| attUpperRange = []; | |||
| else | |||
| % sigal 12/6/13 - use binary attribute mat file | |||
| attFile = strrep(file, '.txt.mat', '.usr.mat'); | |||
| [attributes, attUpperRange, attSelected, attStat] = PrepareAttributes5(datasetDir, attFile, nodes, numAttrCols, maxAttStat, attSelected); | |||
| [attributes, attUpperRange, attSelected, ~] = PrepareAttributes5(datasetDir, attFile, numAttrCols, maxAttStat, attSelected); | |||
| LogMsg(sprintf('Select %d attributes out of %d ...', sum(attSelected), size(attSelected,2))); | |||
| end | |||
| if runAlgFlag == 1 | |||
| date_now = clock; | |||
| date_now = strcat(num2str(date_now(1)),'_',num2str(date_now(2)),'_', num2str(date_now(3)),'_', num2str(date_now(4)), num2str(date_now(5)),'_', num2str(date_now(6))); | |||
| % make sure dump & results directories exist | |||
| if (firstIter == 1 && i == 1) | |||
| firstIter = 0; | |||
| if isdir(results_dir) == 0 | |||
| mkdir(results_dir); | |||
| if runAlgFlag == 1 | |||
| date_now = clock; | |||
| date_now = strcat(num2str(date_now(1)),'_',num2str(date_now(2)),'_', num2str(date_now(3)),'_', num2str(date_now(4)), num2str(date_now(5)),'_', num2str(date_now(6))); | |||
| % make sure dump & results directories exist | |||
| if (firstIter == 1 && i == 1) | |||
| firstIter = 0; | |||
| if isdir(results_dir) == 0 | |||
| mkdir(results_dir); | |||
| end | |||
| dumpFilePath = sprintf('%sdumpKronEM_%s/', results_dir, date_now); | |||
| if (dumpKronEM == 1) | |||
| mkdir(dumpFilePath); | |||
| end | |||
| dump_data_dir = sprintf('%sdumpData_%s/', results_dir, date_now); | |||
| if dumpGED == 1 && isdir(dump_data_dir) == 0 | |||
| mkdir(dump_data_dir) | |||
| end | |||
| end | |||
| dumpFilePath = sprintf('%sdumpKronEM_%s/', results_dir, date_now); | |||
| if (dumpKronEM == 1) | |||
| mkdir(dumpFilePath); | |||
| % run algorithm (file load is done internaly) | |||
| [rand_score,purity,p_triads,missing_nodes_mapping,removed_nodes] = MissingNodes_S8b(datasetDir, file, ... | |||
| attributes, attUpperRange, attWeight, addMissingAtt, normFactorVec, affinities, num_missing_nodes_arr, attAffinityThreshold, ... | |||
| imagesData, numImagesProfiles, imgMissProb, imgSimType, imgSimProbDiff, percentKnownPHsVec, dumpGED, dump_data_dir, iter); | |||
| %[rand_score,purity,p_triads,missing_nodes_mapping,removed_nodes] = MissingNodes_Sparse(datasetDir, file, affinities, 1); | |||
| % dump graph data for KronEM runs | |||
| if dumpKronEM == 1 | |||
| DumpDataset(datasetDir, file, iter, removed_nodes, dumpFilePath); | |||
| end | |||
| dump_data_dir = sprintf('%sdumpData_%s/', results_dir, date_now); | |||
| if dumpGED == 1 && isdir(dump_data_dir) == 0 | |||
| mkdir(dump_data_dir) | |||
| % save results | |||
| out_file = sprintf('%sres_%s_%s.mat', results_dir, file, date_now); | |||
| save(out_file); | |||
| file_name = sprintf('%s_%s','../output/mine/',file); | |||
| if(iter == 0) | |||
| copyfile('../output/graphed_0.mat',file_name); | |||
| end | |||
| end | |||
| % run algorithm (file load is done internaly) | |||
| [rand_score,purity,p_triads,missing_nodes_mapping,removed_nodes] = MissingNodes_S8b(datasetDir, file, ... | |||
| attributes, attUpperRange, attWeight, addMissingAtt, normFactorVec, affinities, num_missing_nodes_arr, attAffinityThreshold, ... | |||
| imagesData, numImagesProfiles, imgMissProb, imgSimType, imgSimProbDiff, percentKnownPHsVec, dumpGED, dump_data_dir, iter); | |||
| %[rand_score,purity,p_triads,missing_nodes_mapping,removed_nodes] = MissingNodes_Sparse(datasetDir, file, affinities, 1); | |||
| % dump graph data for KronEM runs | |||
| if dumpKronEM == 1 | |||
| DumpDataset(datasetDir, file, iter, removed_nodes, dumpFilePath); | |||
| end | |||
| % save results | |||
| out_file = sprintf('%sres_%s_%s.mat', results_dir, file, date_now); | |||
| save(out_file); | |||
| LogMsg(sprintf('Results for file %s,iter %d at %s',file,iter,out_file)); | |||
| %fprintf('Completed RunExperiment cycle - results at %s.\n',out_file); | |||
| LogMsg(sprintf('Results for file %s,iter %d at %s',file,iter,out_file)); | |||
| %fprintf('Completed RunExperiment cycle - results at %s.\n',out_file); | |||
| end | |||
| catch | |||
| fprintf('An Error Occured!!!!!') | |||
| end | |||
| % beep; | |||
| end | |||
| end | |||
| end | |||
| date_now = clock; | |||
| date_now = strcat(num2str(date_now(1)),'_',num2str(date_now(2)),'_', num2str(date_now(3)),'_', num2str(date_now(4)), num2str(date_now(5)),'_', num2str(date_now(6))); | |||
| LogMsg(sprintf('%s Completed RunExpSrv8s RunExperiment (random %d).',date_now,randSeed)); | |||
| end | |||
| end | |||
| @@ -8,7 +8,7 @@ clc; | |||
| % calc GED vice the orignal graph | |||
| % end | |||
| %graphDist = []; | |||
| rootDir = '/Users/armin/Desktop/DML/projects/graphgenproj/graph_production/' ; | |||
| rootDir = 'C:\Users\Iraj\Desktop\DML\' ; | |||
| datasetDir = strcat(rootDir,'produced_graphs/'); %' '; % sigal 28.8.12 | |||
| resultsDir = strcat(rootDir,'results_ged/'); | |||
| file1Iter = []; % networks options [1:1:10] - selection iter | |||