You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

main_DeepGMG.py 21KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556
  1. # an implementation for "Learning Deep Generative Models of Graphs"
  2. from baselines.graphvae.util import load_data
  3. from main import *
  4. class Args_DGMG():
  5. def __init__(self):
  6. ### CUDA
  7. self.cuda = 0
  8. ### model type
  9. self.note = 'Baseline_DGMG' # do GCN after adding each edge
  10. # self.note = 'Baseline_DGMG_fast' # do GCN only after adding each node
  11. ### data config
  12. # self.graph_type = 'caveman_small'
  13. # self.graph_type = 'grid_small'
  14. self.graph_type = 'COLLAB'
  15. # self.graph_type = 'ladder_small'
  16. # self.graph_type = 'enzymes_small'
  17. # self.graph_type = 'barabasi_small'
  18. # self.graph_type = 'citeseer_small'
  19. self.max_num_node = 20
  20. ### network config
  21. self.node_embedding_size = 64
  22. self.test_graph_num = 200
  23. ### training config
  24. self.epochs = 2000 # now one epoch means self.batch_ratio x batch_size
  25. self.load_epoch = 2000
  26. self.epochs_test_start = 100
  27. self.epochs_test = 100
  28. self.epochs_log = 2
  29. self.epochs_save = 100
  30. if 'fast' in self.note:
  31. self.is_fast = True
  32. else:
  33. self.is_fast = False
  34. self.lr = 0.001
  35. self.milestones = [300, 600, 1000]
  36. self.lr_rate = 0.3
  37. ### output config
  38. self.model_save_path = 'model_save/'
  39. self.graph_save_path = 'graphs/'
  40. self.figure_save_path = 'figures/'
  41. self.timing_save_path = 'timing/'
  42. self.figure_prediction_save_path = 'figures_prediction/'
  43. self.nll_save_path = 'nll/'
  44. self.fname = self.note + '_' + self.graph_type + '_' + str(self.node_embedding_size)
  45. self.fname_pred = self.note + '_' + self.graph_type + '_' + str(self.node_embedding_size) + '_pred_'
  46. self.fname_train = self.note + '_' + self.graph_type + '_' + str(self.node_embedding_size) + '_train_'
  47. self.fname_test = self.note + '_' + self.graph_type + '_' + str(self.node_embedding_size) + '_test_'
  48. self.load = False
  49. self.save = True
  50. def train_DGMG_epoch(epoch, args, model, dataset, optimizer, scheduler, is_fast = False):
  51. model.train()
  52. graph_num = len(dataset)
  53. order = list(range(graph_num))
  54. shuffle(order)
  55. loss_addnode = 0
  56. loss_addedge = 0
  57. loss_node = 0
  58. for i in order:
  59. model.zero_grad()
  60. graph = dataset[i]
  61. # do random ordering: relabel nodes
  62. node_order = list(range(graph.number_of_nodes()))
  63. shuffle(node_order)
  64. order_mapping = dict(zip(graph.nodes(), node_order))
  65. graph = nx.relabel_nodes(graph, order_mapping, copy=True)
  66. # NOTE: when starting loop, we assume a node has already been generated
  67. node_count = 1
  68. node_embedding = [Variable(torch.ones(1,args.node_embedding_size)).cuda()] # list of torch tensors, each size: 1*hidden
  69. loss = 0
  70. while node_count<=graph.number_of_nodes():
  71. node_neighbor = graph.subgraph(list(range(node_count))).adjacency_list() # list of lists (first node is zero)
  72. node_neighbor_new = graph.subgraph(list(range(node_count+1))).adjacency_list()[-1] # list of new node's neighbors
  73. # 1 message passing
  74. # do 2 times message passing
  75. node_embedding = message_passing(node_neighbor, node_embedding, model)
  76. # 2 graph embedding and new node embedding
  77. node_embedding_cat = torch.cat(node_embedding, dim=0)
  78. graph_embedding = calc_graph_embedding(node_embedding_cat, model)
  79. init_embedding = calc_init_embedding(node_embedding_cat, model)
  80. # 3 f_addnode
  81. p_addnode = model.f_an(graph_embedding)
  82. if node_count < graph.number_of_nodes():
  83. # add node
  84. node_neighbor.append([])
  85. node_embedding.append(init_embedding)
  86. if is_fast:
  87. node_embedding_cat = torch.cat(node_embedding, dim=0)
  88. # calc loss
  89. loss_addnode_step = F.binary_cross_entropy(p_addnode,Variable(torch.ones((1,1))).cuda())
  90. # loss_addnode_step.backward(retain_graph=True)
  91. loss += loss_addnode_step
  92. loss_addnode += loss_addnode_step.data
  93. else:
  94. # calc loss
  95. loss_addnode_step = F.binary_cross_entropy(p_addnode, Variable(torch.zeros((1, 1))).cuda())
  96. # loss_addnode_step.backward(retain_graph=True)
  97. loss += loss_addnode_step
  98. loss_addnode += loss_addnode_step.data
  99. break
  100. edge_count = 0
  101. while edge_count<=len(node_neighbor_new):
  102. if not is_fast:
  103. node_embedding = message_passing(node_neighbor, node_embedding, model)
  104. node_embedding_cat = torch.cat(node_embedding, dim=0)
  105. graph_embedding = calc_graph_embedding(node_embedding_cat, model)
  106. # 4 f_addedge
  107. p_addedge = model.f_ae(graph_embedding)
  108. if edge_count < len(node_neighbor_new):
  109. # calc loss
  110. loss_addedge_step = F.binary_cross_entropy(p_addedge, Variable(torch.ones((1, 1))).cuda())
  111. # loss_addedge_step.backward(retain_graph=True)
  112. loss += loss_addedge_step
  113. loss_addedge += loss_addedge_step.data
  114. # 5 f_nodes
  115. # excluding the last node (which is the new node)
  116. node_new_embedding_cat = node_embedding_cat[-1,:].expand(node_embedding_cat.size(0)-1,node_embedding_cat.size(1))
  117. s_node = model.f_s(torch.cat((node_embedding_cat[0:-1,:],node_new_embedding_cat),dim=1))
  118. p_node = F.softmax(s_node.permute(1,0))
  119. # get ground truth
  120. a_node = torch.zeros((1,p_node.size(1)))
  121. # print('node_neighbor_new',node_neighbor_new, edge_count)
  122. a_node[0,node_neighbor_new[edge_count]] = 1
  123. a_node = Variable(a_node).cuda()
  124. # add edge
  125. node_neighbor[-1].append(node_neighbor_new[edge_count])
  126. node_neighbor[node_neighbor_new[edge_count]].append(len(node_neighbor)-1)
  127. # calc loss
  128. loss_node_step = F.binary_cross_entropy(p_node,a_node)
  129. # loss_node_step.backward(retain_graph=True)
  130. loss += loss_node_step
  131. loss_node += loss_node_step.data
  132. else:
  133. # calc loss
  134. loss_addedge_step = F.binary_cross_entropy(p_addedge, Variable(torch.zeros((1, 1))).cuda())
  135. # loss_addedge_step.backward(retain_graph=True)
  136. loss += loss_addedge_step
  137. loss_addedge += loss_addedge_step.data
  138. break
  139. edge_count += 1
  140. node_count += 1
  141. # update deterministic and lstm
  142. loss.backward()
  143. optimizer.step()
  144. scheduler.step()
  145. loss_all = loss_addnode + loss_addedge + loss_node
  146. if epoch % args.epochs_log==0:
  147. print('Epoch: {}/{}, train loss: {:.6f}, graph type: {}, hidden: {}'.format(
  148. epoch, args.epochs,loss_all.item(), args.graph_type, args.node_embedding_size))
  149. # loss_sum += loss.data[0]*x.size(0)
  150. # return loss_sum
  151. def train_DGMG_forward_epoch(args, model, dataset, is_fast = False):
  152. model.train()
  153. graph_num = len(dataset)
  154. order = list(range(graph_num))
  155. shuffle(order)
  156. loss_addnode = 0
  157. loss_addedge = 0
  158. loss_node = 0
  159. for i in order:
  160. model.zero_grad()
  161. graph = dataset[i]
  162. # do random ordering: relabel nodes
  163. node_order = list(range(graph.number_of_nodes()))
  164. shuffle(node_order)
  165. order_mapping = dict(zip(graph.nodes(), node_order))
  166. graph = nx.relabel_nodes(graph, order_mapping, copy=True)
  167. # NOTE: when starting loop, we assume a node has already been generated
  168. node_count = 1
  169. node_embedding = [Variable(torch.ones(1,args.node_embedding_size)).cuda()] # list of torch tensors, each size: 1*hidden
  170. loss = 0
  171. while node_count<=graph.number_of_nodes():
  172. node_neighbor = graph.subgraph(list(range(node_count))).adjacency_list() # list of lists (first node is zero)
  173. node_neighbor_new = graph.subgraph(list(range(node_count+1))).adjacency_list()[-1] # list of new node's neighbors
  174. # 1 message passing
  175. # do 2 times message passing
  176. node_embedding = message_passing(node_neighbor, node_embedding, model)
  177. # 2 graph embedding and new node embedding
  178. node_embedding_cat = torch.cat(node_embedding, dim=0)
  179. graph_embedding = calc_graph_embedding(node_embedding_cat, model)
  180. init_embedding = calc_init_embedding(node_embedding_cat, model)
  181. # 3 f_addnode
  182. p_addnode = model.f_an(graph_embedding)
  183. if node_count < graph.number_of_nodes():
  184. # add node
  185. node_neighbor.append([])
  186. node_embedding.append(init_embedding)
  187. if is_fast:
  188. node_embedding_cat = torch.cat(node_embedding, dim=0)
  189. # calc loss
  190. loss_addnode_step = F.binary_cross_entropy(p_addnode,Variable(torch.ones((1,1))).cuda())
  191. # loss_addnode_step.backward(retain_graph=True)
  192. loss += loss_addnode_step
  193. loss_addnode += loss_addnode_step.data
  194. else:
  195. # calc loss
  196. loss_addnode_step = F.binary_cross_entropy(p_addnode, Variable(torch.zeros((1, 1))).cuda())
  197. # loss_addnode_step.backward(retain_graph=True)
  198. loss += loss_addnode_step
  199. loss_addnode += loss_addnode_step.data
  200. break
  201. edge_count = 0
  202. while edge_count<=len(node_neighbor_new):
  203. if not is_fast:
  204. node_embedding = message_passing(node_neighbor, node_embedding, model)
  205. node_embedding_cat = torch.cat(node_embedding, dim=0)
  206. graph_embedding = calc_graph_embedding(node_embedding_cat, model)
  207. # 4 f_addedge
  208. p_addedge = model.f_ae(graph_embedding)
  209. if edge_count < len(node_neighbor_new):
  210. # calc loss
  211. loss_addedge_step = F.binary_cross_entropy(p_addedge, Variable(torch.ones((1, 1))).cuda())
  212. # loss_addedge_step.backward(retain_graph=True)
  213. loss += loss_addedge_step
  214. loss_addedge += loss_addedge_step.data
  215. # 5 f_nodes
  216. # excluding the last node (which is the new node)
  217. node_new_embedding_cat = node_embedding_cat[-1,:].expand(node_embedding_cat.size(0)-1,node_embedding_cat.size(1))
  218. s_node = model.f_s(torch.cat((node_embedding_cat[0:-1,:],node_new_embedding_cat),dim=1))
  219. p_node = F.softmax(s_node.permute(1,0))
  220. # get ground truth
  221. a_node = torch.zeros((1,p_node.size(1)))
  222. # print('node_neighbor_new',node_neighbor_new, edge_count)
  223. a_node[0,node_neighbor_new[edge_count]] = 1
  224. a_node = Variable(a_node).cuda()
  225. # add edge
  226. node_neighbor[-1].append(node_neighbor_new[edge_count])
  227. node_neighbor[node_neighbor_new[edge_count]].append(len(node_neighbor)-1)
  228. # calc loss
  229. loss_node_step = F.binary_cross_entropy(p_node,a_node)
  230. # loss_node_step.backward(retain_graph=True)
  231. loss += loss_node_step
  232. loss_node += loss_node_step.data*p_node.size(1)
  233. else:
  234. # calc loss
  235. loss_addedge_step = F.binary_cross_entropy(p_addedge, Variable(torch.zeros((1, 1))).cuda())
  236. # loss_addedge_step.backward(retain_graph=True)
  237. loss += loss_addedge_step
  238. loss_addedge += loss_addedge_step.data
  239. break
  240. edge_count += 1
  241. node_count += 1
  242. loss_all = loss_addnode + loss_addedge + loss_node
  243. # if epoch % args.epochs_log==0:
  244. # print('Epoch: {}/{}, train loss: {:.6f}, graph type: {}, hidden: {}'.format(
  245. # epoch, args.epochs,loss_all[0], args.graph_type, args.node_embedding_size))
  246. return loss_all[0]/len(dataset)
  247. def test_DGMG_epoch(args, model, is_fast=False):
  248. model.eval()
  249. graph_num = args.test_graph_num
  250. graphs_generated = []
  251. for i in range(graph_num):
  252. # NOTE: when starting loop, we assume a node has already been generated
  253. node_neighbor = [[]] # list of lists (first node is zero)
  254. node_embedding = [Variable(torch.ones(1,args.node_embedding_size)).cuda()] # list of torch tensors, each size: 1*hidden
  255. node_count = 1
  256. while node_count<=args.max_num_node:
  257. # 1 message passing
  258. # do 2 times message passing
  259. node_embedding = message_passing(node_neighbor, node_embedding, model)
  260. # 2 graph embedding and new node embedding
  261. node_embedding_cat = torch.cat(node_embedding, dim=0)
  262. graph_embedding = calc_graph_embedding(node_embedding_cat, model)
  263. init_embedding = calc_init_embedding(node_embedding_cat, model)
  264. # 3 f_addnode
  265. p_addnode = model.f_an(graph_embedding)
  266. a_addnode = sample_tensor(p_addnode)
  267. # print(a_addnode.data[0][0])
  268. if a_addnode.data[0][0]==1:
  269. # print('add node')
  270. # add node
  271. node_neighbor.append([])
  272. node_embedding.append(init_embedding)
  273. if is_fast:
  274. node_embedding_cat = torch.cat(node_embedding, dim=0)
  275. else:
  276. break
  277. edge_count = 0
  278. while edge_count<args.max_num_node:
  279. if not is_fast:
  280. node_embedding = message_passing(node_neighbor, node_embedding, model)
  281. node_embedding_cat = torch.cat(node_embedding, dim=0)
  282. graph_embedding = calc_graph_embedding(node_embedding_cat, model)
  283. # 4 f_addedge
  284. p_addedge = model.f_ae(graph_embedding)
  285. a_addedge = sample_tensor(p_addedge)
  286. # print(a_addedge.data[0][0])
  287. if a_addedge.data[0][0]==1:
  288. # print('add edge')
  289. # 5 f_nodes
  290. # excluding the last node (which is the new node)
  291. node_new_embedding_cat = node_embedding_cat[-1,:].expand(node_embedding_cat.size(0)-1,node_embedding_cat.size(1))
  292. s_node = model.f_s(torch.cat((node_embedding_cat[0:-1,:],node_new_embedding_cat),dim=1))
  293. p_node = F.softmax(s_node.permute(1,0))
  294. a_node = gumbel_softmax(p_node, temperature=0.01)
  295. _, a_node_id = a_node.topk(1)
  296. a_node_id = int(a_node_id.data[0][0])
  297. # add edge
  298. node_neighbor[-1].append(a_node_id)
  299. node_neighbor[a_node_id].append(len(node_neighbor)-1)
  300. else:
  301. break
  302. edge_count += 1
  303. node_count += 1
  304. # save graph
  305. node_neighbor_dict = dict(zip(list(range(len(node_neighbor))), node_neighbor))
  306. graph = nx.from_dict_of_lists(node_neighbor_dict)
  307. graphs_generated.append(graph)
  308. return graphs_generated
  309. ########### train function for LSTM + VAE
  310. def train_DGMG(args, dataset_train, model):
  311. # check if load existing model
  312. if args.load:
  313. fname = args.model_save_path + args.fname + 'model_' + str(args.load_epoch) + '.dat'
  314. model.load_state_dict(torch.load(fname))
  315. args.lr = 0.00001
  316. epoch = args.load_epoch
  317. print('model loaded!, lr: {}'.format(args.lr))
  318. else:
  319. epoch = 1
  320. # initialize optimizer
  321. optimizer = optim.Adam(list(model.parameters()), lr=args.lr)
  322. scheduler = MultiStepLR(optimizer, milestones=args.milestones, gamma=args.lr_rate)
  323. # start main loop
  324. time_all = np.zeros(args.epochs)
  325. while epoch <= args.epochs:
  326. time_start = tm.time()
  327. # train
  328. train_DGMG_epoch(epoch, args, model, dataset_train, optimizer, scheduler, is_fast=args.is_fast)
  329. time_end = tm.time()
  330. time_all[epoch - 1] = time_end - time_start
  331. # print('time used',time_all[epoch - 1])
  332. # test
  333. if epoch % args.epochs_test == 0 and epoch >= args.epochs_test_start:
  334. graphs = test_DGMG_epoch(args,model, is_fast=args.is_fast)
  335. fname = args.graph_save_path + args.fname_pred + str(epoch) + '.dat'
  336. save_graph_list(graphs, fname)
  337. # print('test done, graphs saved')
  338. # save model checkpoint
  339. if args.save:
  340. if epoch % args.epochs_save == 0:
  341. fname = args.model_save_path + args.fname + 'model_' + str(epoch) + '.dat'
  342. torch.save(model.state_dict(), fname)
  343. epoch += 1
  344. np.save(args.timing_save_path + args.fname, time_all)
  345. ########### train function for LSTM + VAE
  346. def train_DGMG_nll(args, dataset_train,dataset_test, model,max_iter=1000):
  347. # check if load existing model
  348. fname = args.model_save_path + args.fname + 'model_' + str(args.load_epoch) + '.dat'
  349. model.load_state_dict(torch.load(fname))
  350. fname_output = args.nll_save_path + args.note + '_' + args.graph_type + '.csv'
  351. with open(fname_output, 'w+') as f:
  352. f.write('train,test\n')
  353. # start main loop
  354. for iter in range(max_iter):
  355. nll_train = train_DGMG_forward_epoch(args, model, dataset_train, is_fast=args.is_fast)
  356. nll_test = train_DGMG_forward_epoch(args, model, dataset_test, is_fast=args.is_fast)
  357. print('train', nll_train, 'test', nll_test)
  358. f.write(str(nll_train) + ',' + str(nll_test) + '\n')
  359. if __name__ == '__main__':
  360. args = Args_DGMG()
  361. os.environ['CUDA_VISIBLE_DEVICES'] = str(args.cuda)
  362. print('CUDA', args.cuda)
  363. print('File name prefix',args.fname)
  364. graphs = []
  365. for i in range(4, 10):
  366. graphs.append(nx.ladder_graph(i))
  367. model = DGM_graphs(h_size = args.node_embedding_size).cuda()
  368. if args.graph_type == 'ladder_small':
  369. graphs = []
  370. for i in range(2, 11):
  371. graphs.append(nx.ladder_graph(i))
  372. args.max_prev_node = 10
  373. if args.graph_type=='caveman_small':
  374. graphs = []
  375. for i in range(2, 3):
  376. for j in range(6, 11):
  377. for k in range(20):
  378. graphs.append(caveman_special(i, j, p_edge=0.8))
  379. args.max_prev_node = 20
  380. if args.graph_type == 'grid_small':
  381. graphs = []
  382. for i in range(2, 4):
  383. for j in range(2, 4):
  384. graphs.append(nx.grid_2d_graph(i, j))
  385. args.max_prev_node = 15
  386. if args.graph_type == 'barabasi_small':
  387. graphs = []
  388. for i in range(4, 21):
  389. for j in range(3, 4):
  390. for k in range(10):
  391. graphs.append(nx.barabasi_albert_graph(i, j))
  392. args.max_prev_node = 20
  393. if args.graph_type == 'enzymes_small':
  394. graphs_raw = Graph_load_batch(min_num_nodes=10, name='ENZYMES')
  395. graphs = []
  396. for G in graphs_raw:
  397. if G.number_of_nodes()<=20:
  398. graphs.append(G)
  399. args.max_prev_node = 15
  400. if args.graph_type == 'citeseer_small':
  401. _, _, G = Graph_load(dataset='citeseer')
  402. G = max(nx.connected_component_subgraphs(G), key=len)
  403. G = nx.convert_node_labels_to_integers(G)
  404. graphs = []
  405. for i in range(G.number_of_nodes()):
  406. G_ego = nx.ego_graph(G, i, radius=1)
  407. if (G_ego.number_of_nodes() >= 4) and (G_ego.number_of_nodes() <= 20):
  408. graphs.append(G_ego)
  409. shuffle(graphs)
  410. graphs = graphs[0:200]
  411. args.max_prev_node = 15
  412. else:
  413. graphs, num_classes = load_data(args.graph_type, True)
  414. small_graphs = []
  415. for i in range(len(graphs)):
  416. if graphs[i].number_of_nodes() < 13:
  417. small_graphs.append(graphs[i])
  418. graphs = small_graphs
  419. args.max_prev_node = 12
  420. # remove self loops
  421. for graph in graphs:
  422. edges_with_selfloops = graph.selfloop_edges()
  423. if len(edges_with_selfloops) > 0:
  424. graph.remove_edges_from(edges_with_selfloops)
  425. # split datasets
  426. random.seed(123)
  427. shuffle(graphs)
  428. graphs_len = len(graphs)
  429. graphs_test = graphs[int(0.8 * graphs_len):]
  430. graphs_train = graphs[0:int(0.8 * graphs_len)]
  431. args.max_num_node = max([graphs[i].number_of_nodes() for i in range(len(graphs))])
  432. # show graphs statistics
  433. print('total graph num: {}, training set: {}'.format(len(graphs), len(graphs_train)))
  434. print('max number node: {}'.format(args.max_num_node))
  435. print('max previous node: {}'.format(args.max_prev_node))
  436. ### train
  437. train_DGMG(args,graphs,model)