# an implementation for "Learning Deep Generative Models of Graphs" from baselines.graphvae.util import load_data from main import * class Args_DGMG(): def __init__(self): ### CUDA self.cuda = 0 ### model type self.note = 'Baseline_DGMG' # do GCN after adding each edge # self.note = 'Baseline_DGMG_fast' # do GCN only after adding each node ### data config # self.graph_type = 'caveman_small' # self.graph_type = 'grid_small' self.graph_type = 'COLLAB' # self.graph_type = 'ladder_small' # self.graph_type = 'enzymes_small' # self.graph_type = 'barabasi_small' # self.graph_type = 'citeseer_small' self.max_num_node = 20 ### network config self.node_embedding_size = 64 self.test_graph_num = 200 ### training config self.epochs = 2000 # now one epoch means self.batch_ratio x batch_size self.load_epoch = 2000 self.epochs_test_start = 100 self.epochs_test = 100 self.epochs_log = 2 self.epochs_save = 100 if 'fast' in self.note: self.is_fast = True else: self.is_fast = False self.lr = 0.001 self.milestones = [300, 600, 1000] self.lr_rate = 0.3 ### output config self.model_save_path = 'model_save/' self.graph_save_path = 'graphs/' self.figure_save_path = 'figures/' self.timing_save_path = 'timing/' self.figure_prediction_save_path = 'figures_prediction/' self.nll_save_path = 'nll/' self.fname = self.note + '_' + self.graph_type + '_' + str(self.node_embedding_size) self.fname_pred = self.note + '_' + self.graph_type + '_' + str(self.node_embedding_size) + '_pred_' self.fname_train = self.note + '_' + self.graph_type + '_' + str(self.node_embedding_size) + '_train_' self.fname_test = self.note + '_' + self.graph_type + '_' + str(self.node_embedding_size) + '_test_' self.load = False self.save = True def train_DGMG_epoch(epoch, args, model, dataset, optimizer, scheduler, is_fast = False): model.train() graph_num = len(dataset) order = list(range(graph_num)) shuffle(order) loss_addnode = 0 loss_addedge = 0 loss_node = 0 for i in order: model.zero_grad() graph = dataset[i] # do random ordering: relabel nodes node_order = list(range(graph.number_of_nodes())) shuffle(node_order) order_mapping = dict(zip(graph.nodes(), node_order)) graph = nx.relabel_nodes(graph, order_mapping, copy=True) # NOTE: when starting loop, we assume a node has already been generated node_count = 1 node_embedding = [Variable(torch.ones(1,args.node_embedding_size)).cuda()] # list of torch tensors, each size: 1*hidden loss = 0 while node_count<=graph.number_of_nodes(): node_neighbor = graph.subgraph(list(range(node_count))).adjacency_list() # list of lists (first node is zero) node_neighbor_new = graph.subgraph(list(range(node_count+1))).adjacency_list()[-1] # list of new node's neighbors # 1 message passing # do 2 times message passing node_embedding = message_passing(node_neighbor, node_embedding, model) # 2 graph embedding and new node embedding node_embedding_cat = torch.cat(node_embedding, dim=0) graph_embedding = calc_graph_embedding(node_embedding_cat, model) init_embedding = calc_init_embedding(node_embedding_cat, model) # 3 f_addnode p_addnode = model.f_an(graph_embedding) if node_count < graph.number_of_nodes(): # add node node_neighbor.append([]) node_embedding.append(init_embedding) if is_fast: node_embedding_cat = torch.cat(node_embedding, dim=0) # calc loss loss_addnode_step = F.binary_cross_entropy(p_addnode,Variable(torch.ones((1,1))).cuda()) # loss_addnode_step.backward(retain_graph=True) loss += loss_addnode_step loss_addnode += loss_addnode_step.data else: # calc loss loss_addnode_step = F.binary_cross_entropy(p_addnode, Variable(torch.zeros((1, 1))).cuda()) # loss_addnode_step.backward(retain_graph=True) loss += loss_addnode_step loss_addnode += loss_addnode_step.data break edge_count = 0 while edge_count<=len(node_neighbor_new): if not is_fast: node_embedding = message_passing(node_neighbor, node_embedding, model) node_embedding_cat = torch.cat(node_embedding, dim=0) graph_embedding = calc_graph_embedding(node_embedding_cat, model) # 4 f_addedge p_addedge = model.f_ae(graph_embedding) if edge_count < len(node_neighbor_new): # calc loss loss_addedge_step = F.binary_cross_entropy(p_addedge, Variable(torch.ones((1, 1))).cuda()) # loss_addedge_step.backward(retain_graph=True) loss += loss_addedge_step loss_addedge += loss_addedge_step.data # 5 f_nodes # excluding the last node (which is the new node) node_new_embedding_cat = node_embedding_cat[-1,:].expand(node_embedding_cat.size(0)-1,node_embedding_cat.size(1)) s_node = model.f_s(torch.cat((node_embedding_cat[0:-1,:],node_new_embedding_cat),dim=1)) p_node = F.softmax(s_node.permute(1,0)) # get ground truth a_node = torch.zeros((1,p_node.size(1))) # print('node_neighbor_new',node_neighbor_new, edge_count) a_node[0,node_neighbor_new[edge_count]] = 1 a_node = Variable(a_node).cuda() # add edge node_neighbor[-1].append(node_neighbor_new[edge_count]) node_neighbor[node_neighbor_new[edge_count]].append(len(node_neighbor)-1) # calc loss loss_node_step = F.binary_cross_entropy(p_node,a_node) # loss_node_step.backward(retain_graph=True) loss += loss_node_step loss_node += loss_node_step.data else: # calc loss loss_addedge_step = F.binary_cross_entropy(p_addedge, Variable(torch.zeros((1, 1))).cuda()) # loss_addedge_step.backward(retain_graph=True) loss += loss_addedge_step loss_addedge += loss_addedge_step.data break edge_count += 1 node_count += 1 # update deterministic and lstm loss.backward() optimizer.step() scheduler.step() loss_all = loss_addnode + loss_addedge + loss_node if epoch % args.epochs_log==0: print('Epoch: {}/{}, train loss: {:.6f}, graph type: {}, hidden: {}'.format( epoch, args.epochs,loss_all.item(), args.graph_type, args.node_embedding_size)) # loss_sum += loss.data[0]*x.size(0) # return loss_sum def train_DGMG_forward_epoch(args, model, dataset, is_fast = False): model.train() graph_num = len(dataset) order = list(range(graph_num)) shuffle(order) loss_addnode = 0 loss_addedge = 0 loss_node = 0 for i in order: model.zero_grad() graph = dataset[i] # do random ordering: relabel nodes node_order = list(range(graph.number_of_nodes())) shuffle(node_order) order_mapping = dict(zip(graph.nodes(), node_order)) graph = nx.relabel_nodes(graph, order_mapping, copy=True) # NOTE: when starting loop, we assume a node has already been generated node_count = 1 node_embedding = [Variable(torch.ones(1,args.node_embedding_size)).cuda()] # list of torch tensors, each size: 1*hidden loss = 0 while node_count<=graph.number_of_nodes(): node_neighbor = graph.subgraph(list(range(node_count))).adjacency_list() # list of lists (first node is zero) node_neighbor_new = graph.subgraph(list(range(node_count+1))).adjacency_list()[-1] # list of new node's neighbors # 1 message passing # do 2 times message passing node_embedding = message_passing(node_neighbor, node_embedding, model) # 2 graph embedding and new node embedding node_embedding_cat = torch.cat(node_embedding, dim=0) graph_embedding = calc_graph_embedding(node_embedding_cat, model) init_embedding = calc_init_embedding(node_embedding_cat, model) # 3 f_addnode p_addnode = model.f_an(graph_embedding) if node_count < graph.number_of_nodes(): # add node node_neighbor.append([]) node_embedding.append(init_embedding) if is_fast: node_embedding_cat = torch.cat(node_embedding, dim=0) # calc loss loss_addnode_step = F.binary_cross_entropy(p_addnode,Variable(torch.ones((1,1))).cuda()) # loss_addnode_step.backward(retain_graph=True) loss += loss_addnode_step loss_addnode += loss_addnode_step.data else: # calc loss loss_addnode_step = F.binary_cross_entropy(p_addnode, Variable(torch.zeros((1, 1))).cuda()) # loss_addnode_step.backward(retain_graph=True) loss += loss_addnode_step loss_addnode += loss_addnode_step.data break edge_count = 0 while edge_count<=len(node_neighbor_new): if not is_fast: node_embedding = message_passing(node_neighbor, node_embedding, model) node_embedding_cat = torch.cat(node_embedding, dim=0) graph_embedding = calc_graph_embedding(node_embedding_cat, model) # 4 f_addedge p_addedge = model.f_ae(graph_embedding) if edge_count < len(node_neighbor_new): # calc loss loss_addedge_step = F.binary_cross_entropy(p_addedge, Variable(torch.ones((1, 1))).cuda()) # loss_addedge_step.backward(retain_graph=True) loss += loss_addedge_step loss_addedge += loss_addedge_step.data # 5 f_nodes # excluding the last node (which is the new node) node_new_embedding_cat = node_embedding_cat[-1,:].expand(node_embedding_cat.size(0)-1,node_embedding_cat.size(1)) s_node = model.f_s(torch.cat((node_embedding_cat[0:-1,:],node_new_embedding_cat),dim=1)) p_node = F.softmax(s_node.permute(1,0)) # get ground truth a_node = torch.zeros((1,p_node.size(1))) # print('node_neighbor_new',node_neighbor_new, edge_count) a_node[0,node_neighbor_new[edge_count]] = 1 a_node = Variable(a_node).cuda() # add edge node_neighbor[-1].append(node_neighbor_new[edge_count]) node_neighbor[node_neighbor_new[edge_count]].append(len(node_neighbor)-1) # calc loss loss_node_step = F.binary_cross_entropy(p_node,a_node) # loss_node_step.backward(retain_graph=True) loss += loss_node_step loss_node += loss_node_step.data*p_node.size(1) else: # calc loss loss_addedge_step = F.binary_cross_entropy(p_addedge, Variable(torch.zeros((1, 1))).cuda()) # loss_addedge_step.backward(retain_graph=True) loss += loss_addedge_step loss_addedge += loss_addedge_step.data break edge_count += 1 node_count += 1 loss_all = loss_addnode + loss_addedge + loss_node # if epoch % args.epochs_log==0: # print('Epoch: {}/{}, train loss: {:.6f}, graph type: {}, hidden: {}'.format( # epoch, args.epochs,loss_all[0], args.graph_type, args.node_embedding_size)) return loss_all[0]/len(dataset) def test_DGMG_epoch(args, model, is_fast=False): model.eval() graph_num = args.test_graph_num graphs_generated = [] for i in range(graph_num): # NOTE: when starting loop, we assume a node has already been generated node_neighbor = [[]] # list of lists (first node is zero) node_embedding = [Variable(torch.ones(1,args.node_embedding_size)).cuda()] # list of torch tensors, each size: 1*hidden node_count = 1 while node_count<=args.max_num_node: # 1 message passing # do 2 times message passing node_embedding = message_passing(node_neighbor, node_embedding, model) # 2 graph embedding and new node embedding node_embedding_cat = torch.cat(node_embedding, dim=0) graph_embedding = calc_graph_embedding(node_embedding_cat, model) init_embedding = calc_init_embedding(node_embedding_cat, model) # 3 f_addnode p_addnode = model.f_an(graph_embedding) a_addnode = sample_tensor(p_addnode) # print(a_addnode.data[0][0]) if a_addnode.data[0][0]==1: # print('add node') # add node node_neighbor.append([]) node_embedding.append(init_embedding) if is_fast: node_embedding_cat = torch.cat(node_embedding, dim=0) else: break edge_count = 0 while edge_count= args.epochs_test_start: graphs = test_DGMG_epoch(args,model, is_fast=args.is_fast) fname = args.graph_save_path + args.fname_pred + str(epoch) + '.dat' save_graph_list(graphs, fname) # print('test done, graphs saved') # save model checkpoint if args.save: if epoch % args.epochs_save == 0: fname = args.model_save_path + args.fname + 'model_' + str(epoch) + '.dat' torch.save(model.state_dict(), fname) epoch += 1 np.save(args.timing_save_path + args.fname, time_all) ########### train function for LSTM + VAE def train_DGMG_nll(args, dataset_train,dataset_test, model,max_iter=1000): # check if load existing model fname = args.model_save_path + args.fname + 'model_' + str(args.load_epoch) + '.dat' model.load_state_dict(torch.load(fname)) fname_output = args.nll_save_path + args.note + '_' + args.graph_type + '.csv' with open(fname_output, 'w+') as f: f.write('train,test\n') # start main loop for iter in range(max_iter): nll_train = train_DGMG_forward_epoch(args, model, dataset_train, is_fast=args.is_fast) nll_test = train_DGMG_forward_epoch(args, model, dataset_test, is_fast=args.is_fast) print('train', nll_train, 'test', nll_test) f.write(str(nll_train) + ',' + str(nll_test) + '\n') if __name__ == '__main__': args = Args_DGMG() os.environ['CUDA_VISIBLE_DEVICES'] = str(args.cuda) print('CUDA', args.cuda) print('File name prefix',args.fname) graphs = [] for i in range(4, 10): graphs.append(nx.ladder_graph(i)) model = DGM_graphs(h_size = args.node_embedding_size).cuda() if args.graph_type == 'ladder_small': graphs = [] for i in range(2, 11): graphs.append(nx.ladder_graph(i)) args.max_prev_node = 10 if args.graph_type=='caveman_small': graphs = [] for i in range(2, 3): for j in range(6, 11): for k in range(20): graphs.append(caveman_special(i, j, p_edge=0.8)) args.max_prev_node = 20 if args.graph_type == 'grid_small': graphs = [] for i in range(2, 4): for j in range(2, 4): graphs.append(nx.grid_2d_graph(i, j)) args.max_prev_node = 15 if args.graph_type == 'barabasi_small': graphs = [] for i in range(4, 21): for j in range(3, 4): for k in range(10): graphs.append(nx.barabasi_albert_graph(i, j)) args.max_prev_node = 20 if args.graph_type == 'enzymes_small': graphs_raw = Graph_load_batch(min_num_nodes=10, name='ENZYMES') graphs = [] for G in graphs_raw: if G.number_of_nodes()<=20: graphs.append(G) args.max_prev_node = 15 if args.graph_type == 'citeseer_small': _, _, G = Graph_load(dataset='citeseer') G = max(nx.connected_component_subgraphs(G), key=len) G = nx.convert_node_labels_to_integers(G) graphs = [] for i in range(G.number_of_nodes()): G_ego = nx.ego_graph(G, i, radius=1) if (G_ego.number_of_nodes() >= 4) and (G_ego.number_of_nodes() <= 20): graphs.append(G_ego) shuffle(graphs) graphs = graphs[0:200] args.max_prev_node = 15 else: graphs, num_classes = load_data(args.graph_type, True) small_graphs = [] for i in range(len(graphs)): if graphs[i].number_of_nodes() < 13: small_graphs.append(graphs[i]) graphs = small_graphs args.max_prev_node = 12 # remove self loops for graph in graphs: edges_with_selfloops = graph.selfloop_edges() if len(edges_with_selfloops) > 0: graph.remove_edges_from(edges_with_selfloops) # split datasets random.seed(123) shuffle(graphs) graphs_len = len(graphs) graphs_test = graphs[int(0.8 * graphs_len):] graphs_train = graphs[0:int(0.8 * graphs_len)] args.max_num_node = max([graphs[i].number_of_nodes() for i in range(len(graphs))]) # show graphs statistics print('total graph num: {}, training set: {}'.format(len(graphs), len(graphs_train))) print('max number node: {}'.format(args.max_num_node)) print('max previous node: {}'.format(args.max_prev_node)) ### train train_DGMG(args,graphs,model)