You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

main.py 10KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229
  1. from imblearn.under_sampling import RandomUnderSampler
  2. from sklearn.model_selection import train_test_split
  3. from sklearn.utils.class_weight import compute_class_weight
  4. from torch.utils.data import TensorDataset, DataLoader, SubsetRandomSampler
  5. from sklearn.model_selection import KFold
  6. from DeepDRA import DeepDRA, train, test
  7. from data_loader import RawDataLoader
  8. from evaluation import Evaluation
  9. from utils import *
  10. import random
  11. import torch
  12. import numpy as np
  13. import pandas as pd
  14. # Step 1: Define the batch size for training
  15. batch_size = 64
  16. # Step 2: Instantiate the combined model
  17. ae_latent_dim = 50
  18. num_epochs = 25
  19. def train_DeepDRA(x_cell_train, x_cell_test, x_drug_train, x_drug_test, y_train, y_test, cell_sizes, drug_sizes,device):
  20. """
  21. Train and evaluate the DeepDRA model.
  22. Parameters:
  23. - X_cell_train (pd.DataFrame): Training data for the cell modality.
  24. - X_cell_test (pd.DataFrame): Test data for the cell modality.
  25. - X_drug_train (pd.DataFrame): Training data for the drug modality.
  26. - X_drug_test (pd.DataFrame): Test data for the drug modality.
  27. - y_train (pd.Series): Training labels.
  28. - y_test (pd.Series): Test labels.
  29. - cell_sizes (list): Sizes of the cell modality features.
  30. - drug_sizes (list): Sizes of the drug modality features.
  31. Returns:
  32. - result: Evaluation result on the test set.
  33. """
  34. model = DeepDRA(cell_sizes, drug_sizes, ae_latent_dim, ae_latent_dim, mlp_input_dim, mlp_output_dim)
  35. model= model.to(device)
  36. # Step 3: Convert your training data to PyTorch tensors
  37. x_cell_train_tensor = torch.Tensor(x_cell_train.values)
  38. x_drug_train_tensor = torch.Tensor(x_drug_train.values)
  39. x_cell_train_tensor = torch.nn.functional.normalize(x_cell_train_tensor, dim=0)
  40. x_drug_train_tensor = torch.nn.functional.normalize(x_drug_train_tensor, dim=0)
  41. y_train_tensor = torch.Tensor(y_train)
  42. y_train_tensor = y_train_tensor.unsqueeze(1)
  43. # Compute class weights
  44. classes = [0, 1] # Assuming binary classification
  45. class_weights = torch.tensor(compute_class_weight(class_weight='balanced', classes=classes, y=y_train),
  46. dtype=torch.float32)
  47. x_cell_train_tensor, x_cell_val_tensor, x_drug_train_tensor, x_drug_val_tensor, y_train_tensor, y_val_tensor = train_test_split(
  48. x_cell_train_tensor, x_drug_train_tensor, y_train_tensor, test_size=0.1,
  49. random_state=RANDOM_SEED,
  50. shuffle=True)
  51. # Step 4: Create a TensorDataset with the input features and target labels
  52. train_dataset = TensorDataset(x_cell_train_tensor.to(device), x_drug_train_tensor.to(device), y_train_tensor.to(device))
  53. val_dataset = TensorDataset(x_cell_val_tensor.to(device), x_drug_val_tensor.to(device), y_val_tensor.to(device))
  54. # Step 5: Create the train_loader
  55. train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
  56. val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=True)
  57. # Step 6: Train the model
  58. train(model, train_loader, val_loader, num_epochs,class_weights)
  59. # Step 7: Save the trained model
  60. torch.save(model, 'DeepDRA.pth')
  61. # Step 8: Load the saved model
  62. model = torch.load('DeepDRA.pth')
  63. # Step 9: Convert your test data to PyTorch tensors
  64. x_cell_test_tensor = torch.Tensor(x_cell_test.values)
  65. x_drug_test_tensor = torch.Tensor(x_drug_test.values)
  66. y_test_tensor = torch.Tensor(y_test).to(device)
  67. # normalize data
  68. x_cell_test_tensor = torch.nn.functional.normalize(x_cell_test_tensor, dim=0).to(device)
  69. x_drug_test_tensor = torch.nn.functional.normalize(x_drug_test_tensor, dim=0).to(device)
  70. # Step 10: Create a TensorDataset with the input features and target labels for testing
  71. test_dataset = TensorDataset(x_cell_test_tensor, x_drug_test_tensor, y_test_tensor)
  72. test_loader = DataLoader(test_dataset, batch_size=len(x_cell_test))
  73. # Step 11: Test the model
  74. return test(model, test_loader)
  75. def cv_train(x_cell_train, x_drug_train, y_train, cell_sizes,
  76. drug_sizes, device, k=5, ):
  77. splits = KFold(n_splits=k, shuffle=True, random_state=RANDOM_SEED)
  78. history = {'AUC': [], 'AUPRC': [], "Accuracy": [], "Precision": [], "Recall": [], "F1 score": []}
  79. for fold, (train_idx, val_idx) in enumerate(splits.split(np.arange(len(x_cell_train)))):
  80. print('Fold {}'.format(fold + 1))
  81. train_sampler = SubsetRandomSampler(train_idx)
  82. test_sampler = SubsetRandomSampler(val_idx)
  83. model = DeepDRA(cell_sizes, drug_sizes, ae_latent_dim, ae_latent_dim)
  84. # Convert your training data to PyTorch tensors
  85. x_cell_train_tensor = torch.Tensor(x_cell_train.values)
  86. x_drug_train_tensor = torch.Tensor(x_drug_train.values)
  87. y_train_tensor = torch.Tensor(y_train)
  88. y_train_tensor = y_train_tensor.unsqueeze(1)
  89. # Compute class weights
  90. classes = [0, 1] # Assuming binary classification
  91. class_weights = torch.tensor(compute_class_weight(class_weight='balanced', classes=classes, y=y_train),
  92. dtype=torch.float32)
  93. # Create a TensorDataset with the input features and target labels
  94. train_dataset = TensorDataset(x_cell_train_tensor, x_drug_train_tensor, y_train_tensor)
  95. # Create the train_loader
  96. train_loader = DataLoader(train_dataset, batch_size=batch_size, sampler=train_sampler)
  97. # Train the model
  98. train(model, train_loader,train_loader, num_epochs, class_weights)
  99. # Create a TensorDataset with the input features and target labels
  100. test_loader = DataLoader(train_dataset, batch_size=len(x_cell_train), sampler=test_sampler)
  101. # Test the model
  102. results = test(model, test_loader)
  103. # Step 10: Add results to the history dictionary
  104. Evaluation.add_results(history, results)
  105. return Evaluation.show_final_results(history)
  106. def run(k, is_test=False ):
  107. """
  108. Run the training and evaluation process k times.
  109. Parameters:
  110. - k (int): Number of times to run the process.
  111. - is_test (bool): If True, run on test data; otherwise, perform train-validation split.
  112. Returns:
  113. - history (dict): Dictionary containing evaluation metrics for each run.
  114. """
  115. device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
  116. print(device)
  117. # Step 1: Initialize a dictionary to store evaluation metrics
  118. history = {'AUC': [], 'AUPRC': [], "Accuracy": [], "Precision": [], "Recall": [], "F1 score": []}
  119. # Step 2: Load training data
  120. train_data, train_drug_screen = RawDataLoader.load_data(data_modalities=DATA_MODALITIES,
  121. raw_file_directory=RAW_BOTH_DATA_FOLDER,
  122. screen_file_directory=BOTH_SCREENING_DATA_FOLDER,
  123. sep="\t")
  124. # Step 3: Load test data if applicable
  125. if is_test:
  126. test_data, test_drug_screen = RawDataLoader.load_data(data_modalities=DATA_MODALITIES,
  127. raw_file_directory=CCLE_RAW_DATA_FOLDER,
  128. screen_file_directory=CCLE_SCREENING_DATA_FOLDER,
  129. sep="\t")
  130. train_data, test_data = RawDataLoader.data_features_intersect(train_data, test_data)
  131. # Step 4: Prepare input data for training
  132. x_cell_train, x_drug_train, y_train, cell_sizes, drug_sizes = RawDataLoader.prepare_input_data(train_data,
  133. train_drug_screen)
  134. if is_test:
  135. x_cell_test, x_drug_test, y_test, cell_sizes, drug_sizes = RawDataLoader.prepare_input_data(test_data,
  136. test_drug_screen)
  137. rus = RandomUnderSampler(sampling_strategy="majority", random_state=RANDOM_SEED)
  138. dataset = pd.concat([x_cell_train, x_drug_train], axis=1)
  139. dataset.index = x_cell_train.index
  140. dataset, y_train = rus.fit_resample(dataset, y_train)
  141. x_cell_train = dataset.iloc[:, :sum(cell_sizes)]
  142. x_drug_train = dataset.iloc[:, sum(cell_sizes):]
  143. # Step 5: Loop over k runs
  144. for i in range(k):
  145. print('Run {}'.format(i))
  146. # Step 6: If is_test is True, perform random under-sampling on the training data
  147. if is_test:
  148. # Step 7: Train and evaluate the DeepDRA model on test data
  149. results = train_DeepDRA(x_cell_train, x_cell_test, x_drug_train, x_drug_test, y_train, y_test, cell_sizes,
  150. drug_sizes, device)
  151. else:
  152. # # Step 8: Split the data into training and validation sets
  153. # X_cell_train, X_cell_test, X_drug_train, X_drug_test, y_train, y_test = train_test_split(X_cell_train,
  154. # X_drug_train, y_train,
  155. # test_size=0.2,
  156. # random_state=RANDOM_SEED,
  157. # shuffle=True)
  158. # # Step 9: Train and evaluate the DeepDRA model on the split data
  159. # results = train_DeepDRA(X_cell_train, X_cell_test, X_drug_train, X_drug_test, y_train, y_test, cell_sizes,
  160. # drug_sizes, device)
  161. results = cv_train(x_cell_train, x_drug_train, y_train, cell_sizes, drug_sizes, device, k=5)
  162. # Step 10: Add results to the history dictionary
  163. Evaluation.add_results(history, results)
  164. # Step 11: Display final results
  165. Evaluation.show_final_results(history)
  166. return history
  167. if __name__ == '__main__':
  168. torch.manual_seed(RANDOM_SEED)
  169. random.seed(RANDOM_SEED)
  170. np.random.seed(RANDOM_SEED)
  171. run(10, is_test=True)