import os DATA_FOLDER = 'data' TEST_TCGA_DATA_FOLDER = os.path.join(DATA_FOLDER, 'TCGA_test_data') RAW_BOTH_DATA_FOLDER = os.path.join(DATA_FOLDER, 'CTRP_GDSC_data') DRUG_DATA_FOLDER = os.path.join(DATA_FOLDER, 'drug_data') GDSC_RAW_DATA_FOLDER = os.path.join(DATA_FOLDER, 'GDSC_data') CCLE_RAW_DATA_FOLDER = os.path.join(DATA_FOLDER, 'CCLE_data') GDSC_SCREENING_DATA_FOLDER = os.path.join(GDSC_RAW_DATA_FOLDER, 'drug_screening_matrix_GDSC.tsv') CCLE_SCREENING_DATA_FOLDER = os.path.join(CCLE_RAW_DATA_FOLDER, 'drug_screening_matrix_ccle.tsv') BOTH_SCREENING_DATA_FOLDER = os.path.join(RAW_BOTH_DATA_FOLDER, 'drug_screening_matrix_gdsc_ctrp.tsv') CTRP_FOLDER = os.path.join(DATA_FOLDER, 'CTRP') GDSC_FOLDER = os.path.join(DATA_FOLDER, 'GDSC') CCLE_FOLDER = os.path.join(DATA_FOLDER, 'CCLE') MODEL_FOLDER = os.path.join(DATA_FOLDER, 'model') TCGA_DATA_FOLDER = os.path.join(DATA_FOLDER, 'TCGA_data') TCGA_SCREENING_DATA = os.path.join(TCGA_DATA_FOLDER, 'TCGA_screening_matrix.tsv') BUILD_SIM_MATRICES = True # Make this variable True to build similarity matrices from raw data SIM_KERNEL = {'cell_CN': ('euclidean', 0.001), 'cell_exp': ('euclidean', 0.01), 'cell_methy': ('euclidean', 0.1), 'cell_mut': ('jaccard', 1), 'drug_DT': ('jaccard', 1), 'drug_comp': ('euclidean', 0.001), 'drug_desc': ('euclidean', 0.001), 'drug_finger': ('euclidean', 0.001)} SAVE_MODEL = False # Change it to True to save the trained model VARIATIONAL_AUTOENCODERS = False # DATA_MODALITIES=['cell_CN','cell_exp','cell_methy','cell_mut','drug_comp','drug_DT'] # Change this list to only consider specific data modalities DATA_MODALITIES = ['cell_mut', 'drug_desc', 'drug_finger'] RANDOM_SEED = 42 # Must be used wherever can be used