|
|
|
|
|
|
|
|
mlp_output_dim = 1 |
|
|
mlp_output_dim = 1 |
|
|
num_epochs = 25 |
|
|
num_epochs = 25 |
|
|
model = DeepDRA(cell_sizes, drug_sizes, ae_latent_dim, ae_latent_dim, mlp_input_dim, mlp_output_dim) |
|
|
model = DeepDRA(cell_sizes, drug_sizes, ae_latent_dim, ae_latent_dim, mlp_input_dim, mlp_output_dim) |
|
|
model.to(device) |
|
|
|
|
|
|
|
|
model= model.to(device) |
|
|
# Step 3: Convert your training data to PyTorch tensors |
|
|
# Step 3: Convert your training data to PyTorch tensors |
|
|
x_cell_train_tensor = torch.Tensor(x_cell_train.values) |
|
|
x_cell_train_tensor = torch.Tensor(x_cell_train.values) |
|
|
x_drug_train_tensor = torch.Tensor(x_drug_train.values) |
|
|
x_drug_train_tensor = torch.Tensor(x_drug_train.values) |
|
|
|
|
|
|
|
|
y_train_tensor = torch.Tensor(y_train) |
|
|
y_train_tensor = torch.Tensor(y_train) |
|
|
y_train_tensor = y_train_tensor.unsqueeze(1) |
|
|
y_train_tensor = y_train_tensor.unsqueeze(1) |
|
|
|
|
|
|
|
|
x_cell_train_tensor.to(device) |
|
|
|
|
|
x_drug_train_tensor.to(device) |
|
|
|
|
|
y_train_tensor.to(device) |
|
|
|
|
|
|
|
|
|
|
|
# Compute class weights |
|
|
# Compute class weights |
|
|
classes = [0, 1] # Assuming binary classification |
|
|
classes = [0, 1] # Assuming binary classification |
|
|
class_weights = torch.tensor(compute_class_weight(class_weight='balanced', classes=classes, y=y_train), |
|
|
class_weights = torch.tensor(compute_class_weight(class_weight='balanced', classes=classes, y=y_train), |
|
|
|
|
|
|
|
|
random_state=RANDOM_SEED, |
|
|
random_state=RANDOM_SEED, |
|
|
shuffle=True) |
|
|
shuffle=True) |
|
|
|
|
|
|
|
|
# Step 4: Create a TensorDataset with the input features and target labels |
|
|
|
|
|
train_dataset = TensorDataset(x_cell_train_tensor, x_drug_train_tensor, y_train_tensor) |
|
|
|
|
|
val_dataset = TensorDataset(x_cell_val_tensor, x_drug_val_tensor, y_val_tensor) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Step 4: Create a TensorDataset with the input features and target labels |
|
|
|
|
|
train_dataset = TensorDataset(x_cell_train_tensor.to(device), x_drug_train_tensor.to(device), y_train_tensor.to(device)) |
|
|
|
|
|
val_dataset = TensorDataset(x_cell_val_tensor.to(device), x_drug_val_tensor.to(device), y_val_tensor.to(device)) |
|
|
# Step 5: Create the train_loader |
|
|
# Step 5: Create the train_loader |
|
|
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) |
|
|
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) |
|
|
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=True) |
|
|
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=True) |
|
|
|
|
|
|
|
|
# Step 9: Convert your test data to PyTorch tensors |
|
|
# Step 9: Convert your test data to PyTorch tensors |
|
|
x_cell_test_tensor = torch.Tensor(x_cell_test.values) |
|
|
x_cell_test_tensor = torch.Tensor(x_cell_test.values) |
|
|
x_drug_test_tensor = torch.Tensor(x_drug_test.values) |
|
|
x_drug_test_tensor = torch.Tensor(x_drug_test.values) |
|
|
y_test_tensor = torch.Tensor(y_test) |
|
|
|
|
|
|
|
|
y_test_tensor = torch.Tensor(y_test).to(device) |
|
|
|
|
|
|
|
|
# normalize data |
|
|
# normalize data |
|
|
x_cell_test_tensor = torch.nn.functional.normalize(x_cell_test_tensor, dim=0) |
|
|
|
|
|
x_drug_test_tensor = torch.nn.functional.normalize(x_drug_test_tensor, dim=0) |
|
|
|
|
|
|
|
|
x_cell_test_tensor = torch.nn.functional.normalize(x_cell_test_tensor, dim=0).to(device) |
|
|
|
|
|
x_drug_test_tensor = torch.nn.functional.normalize(x_drug_test_tensor, dim=0).to(device) |
|
|
|
|
|
|
|
|
# Step 10: Create a TensorDataset with the input features and target labels for testing |
|
|
# Step 10: Create a TensorDataset with the input features and target labels for testing |
|
|
test_dataset = TensorDataset(x_cell_test_tensor, x_drug_test_tensor, y_test_tensor) |
|
|
test_dataset = TensorDataset(x_cell_test_tensor, x_drug_test_tensor, y_test_tensor) |
|
|
|
|
|
|
|
|
- history (dict): Dictionary containing evaluation metrics for each run. |
|
|
- history (dict): Dictionary containing evaluation metrics for each run. |
|
|
""" |
|
|
""" |
|
|
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") |
|
|
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") |
|
|
print(torch.cuda.is_available()) |
|
|
|
|
|
torch.zeros(1).cuda() |
|
|
|
|
|
|
|
|
print(device) |
|
|
# Step 1: Initialize a dictionary to store evaluation metrics |
|
|
# Step 1: Initialize a dictionary to store evaluation metrics |
|
|
history = {'AUC': [], 'AUPRC': [], "Accuracy": [], "Precision": [], "Recall": [], "F1 score": []} |
|
|
history = {'AUC': [], 'AUPRC': [], "Accuracy": [], "Precision": [], "Recall": [], "F1 score": []} |
|
|
|
|
|
|