Browse Source

feat: add main files

main
Taha Mohammadzadeh 11 months ago
parent
commit
875a116899
7 changed files with 1060 additions and 0 deletions
  1. 173
    0
      DeepDRA.py
  2. 105
    0
      autoencoder.py
  3. 249
    0
      data_loader.py
  4. 130
    0
      evaluation.py
  5. 159
    0
      main.py
  6. 128
    0
      mlp.py
  7. 116
    0
      utils.py

+ 173
- 0
DeepDRA.py View File

@@ -0,0 +1,173 @@
import torch.nn as nn
import torch
import torch.optim as optim
from torch.optim import lr_scheduler
from autoencoder import Autoencoder
from evaluation import Evaluation
from mlp import MLP
from utils import *


class DeepDRA(nn.Module):
"""
DeepDRA (Deep Drug Response Anticipation) is a neural network model composed of two autoencoders for cell and drug modalities
and an MLP for integrating the encoded features and making predictions.

Parameters:
- cell_modality_sizes (list): Sizes of the cell modality features.
- drug_modality_sizes (list): Sizes of the drug modality features.
- cell_ae_latent_dim (int): Latent dimension for the cell autoencoder.
- drug_ae_latent_dim (int): Latent dimension for the drug autoencoder.
- mlp_input_dim (int): Input dimension for the MLP.
- mlp_output_dim (int): Output dimension for the MLP.
"""

def __init__(self, cell_modality_sizes, drug_modality_sizes, cell_ae_latent_dim, drug_ae_latent_dim, mlp_input_dim,
mlp_output_dim):
super(DeepDRA, self).__init__()

# Initialize cell and drug autoencoders
self.cell_autoencoder = Autoencoder(sum(cell_modality_sizes), cell_ae_latent_dim)
self.drug_autoencoder = Autoencoder(sum(drug_modality_sizes), drug_ae_latent_dim)

# Store modality sizes
self.cell_modality_sizes = cell_modality_sizes
self.drug_modality_sizes = drug_modality_sizes

# Initialize MLP
self.mlp = MLP(mlp_input_dim, mlp_output_dim)

def forward(self, cell_x, drug_x):
"""
Forward pass of the DeepDRA model.

Parameters:
- cell_x (torch.Tensor): Input tensor for cell modality.
- drug_x (torch.Tensor): Input tensor for drug modality.

Returns:
- cell_decoded (torch.Tensor): Decoded tensor for the cell modality.
- drug_decoded (torch.Tensor): Decoded tensor for the drug modality.
- mlp_output (torch.Tensor): Output tensor from the MLP.
"""
# Encode and decode cell modality
cell_encoded = self.cell_autoencoder.encoder(cell_x)
cell_decoded = self.cell_autoencoder.decoder(cell_encoded)

# Encode and decode drug modality
drug_encoded = self.drug_autoencoder.encoder(drug_x)
drug_decoded = self.drug_autoencoder.decoder(drug_encoded)

# Concatenate encoded cell and drug features and pass through MLP
mlp_output = self.mlp(torch.cat((cell_encoded, drug_encoded), 1))

return cell_decoded, drug_decoded, mlp_output

def compute_l1_loss(self, w):
"""
Computes L1 regularization loss.

Parameters:
- w (torch.Tensor): Input tensor.

Returns:
- loss (torch.Tensor): L1 regularization loss.
"""
return torch.abs(w).sum()

def compute_l2_loss(self, w):
"""
Computes L2 regularization loss.

Parameters:
- w (torch.Tensor): Input tensor.

Returns:
- loss (torch.Tensor): L2 regularization loss.
"""
return torch.square(w).sum()


def train(model, train_loader, num_epochs):
"""
Trains the DeepDRA (Deep Drug Response Anticipation) model.

Parameters:
- model (DeepDRA): The DeepDRA model to be trained.
- train_loader (DataLoader): DataLoader for the training dataset.
- num_epochs (int): Number of training epochs.
"""
autoencoder_loss_fn = nn.MSELoss()
mlp_loss_fn = nn.BCELoss()

mlp_optimizer = optim.Adam(model.parameters(), lr=0.0005)
scheduler = lr_scheduler.ReduceLROnPlateau(mlp_optimizer, mode='min', factor=0.8, patience=5, verbose=True)

for epoch in range(num_epochs):
for batch_idx, (cell_data, drug_data, target) in enumerate(train_loader):
mlp_optimizer.zero_grad()

# Forward pass
cell_decoded_output, drug_decoded_output, mlp_output = model(cell_data, drug_data)

# Compute losses
cell_ae_loss = autoencoder_loss_fn(cell_decoded_output, cell_data)
drug_ae_loss = autoencoder_loss_fn(drug_decoded_output, drug_data)
mlp_loss = mlp_loss_fn(mlp_output, target)

# Total loss is the sum of autoencoder losses and MLP loss
total_loss = drug_ae_loss + cell_ae_loss + mlp_loss

# Backward pass and optimization
total_loss.backward()
mlp_optimizer.step()

# Print progress
if batch_idx % 200 == 0:
print('Epoch [{}/{}], Total Loss: {:.4f}'.format(
epoch + 1, num_epochs, total_loss.item()))

# Learning rate scheduler step
scheduler.step(total_loss)

# Save the trained model
torch.save(model.state_dict(), MODEL_FOLDER + 'DeepDRA.pth')


def test(model, test_loader, reverse=False):
"""
Tests the given model on the test dataset using evaluation metrics.

Parameters:
- model: The trained model to be evaluated.
- test_loader: DataLoader for the test dataset.
- reverse (bool): If True, reverse the predictions for evaluation.

Returns:
- result: The evaluation result based on the chosen metrics.
"""
# Set model to evaluation mode
model.eval()

# Initialize lists to store predictions and ground truth labels
all_predictions = []
all_labels = []

# Iterate over the test dataset
for i, (test_cell_loader, test_drug_loader, labels) in enumerate(test_loader):
# Forward pass through the model
with torch.no_grad():
decoded_cell_output, decoded_drug_output, mlp_output = model(test_cell_loader, test_drug_loader)

# Apply reverse if specified
predictions = 1 - mlp_output if reverse else mlp_output

# # Store predictions and ground truth labels
# all_predictions.extend(predictions.cpu().numpy())
# all_labels.extend(labels.cpu().numpy())

# Evaluate the predictions using the specified metrics
result = Evaluation.evaluate(labels, predictions)

return result


+ 105
- 0
autoencoder.py View File

@@ -0,0 +1,105 @@
import torch
import torch.nn as nn
import torch.optim as optim

class Autoencoder(nn.Module):
"""
Autoencoder neural network model for feature learning.

Parameters:
- input_dim (int): Dimensionality of the input features.
- latent_dim (int): Dimensionality of the latent space.
"""
def __init__(self, input_dim, latent_dim):
super(Autoencoder, self).__init__()
# Encoder architecture
self.encoder = nn.Sequential(
nn.Linear(input_dim, 256),
nn.ReLU(inplace=True),
nn.Linear(256, latent_dim),
nn.ReLU(inplace=True),
)
# Decoder architecture
self.decoder = nn.Sequential(
nn.Linear(latent_dim, 256),
nn.ReLU(inplace=True),
nn.Linear(256, input_dim),
)

def forward(self, x):
"""
Forward pass of the autoencoder.

Parameters:
- x (torch.Tensor): Input tensor.

Returns:
- decoded (torch.Tensor): Decoded output tensor.
"""
encoded = self.encoder(x)
decoded = self.decoder(encoded)
return decoded

def trainAutoencoder(model, train_loader, val_loader, num_epochs, name):
"""
Train the autoencoder model.

Parameters:
- model (Autoencoder): The autoencoder model to be trained.
- train_loader (DataLoader): DataLoader for the training dataset.
- val_loader (DataLoader): DataLoader for the validation dataset.
- num_epochs (int): Number of training epochs.
- name (str): Name to save the trained model.

Returns:
- None
"""
loss_fn = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=0.01, weight_decay=1e-8)
train_loss = []
val_final_loss = []

for epoch in range(num_epochs):
# Training
model.train()
total_train_loss = 0.0

for batch_idx, data in enumerate(train_loader):
data = data[0]
output = model(data)
loss = loss_fn(output, data)
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_train_loss += loss

avg_train_loss = total_train_loss

train_loss.append(avg_train_loss)

# Validation
model.eval()
total_val_loss = 0.0

with torch.no_grad():
for val_batch_idx, (val_data) in enumerate(val_loader):
val_data = val_data[0]
val_output = model(val_data)

val_loss = loss_fn(val_output, val_data)
total_val_loss += val_loss

avg_val_loss = total_val_loss
val_final_loss.append(avg_val_loss)

print('Epoch [{}/{}], Train Loss: {:.4f}, Val Loss: {:.4f}'.format(
epoch + 1, num_epochs, avg_train_loss, avg_val_loss))

before_lr = optimizer.param_groups[0]["lr"]
after_lr = optimizer.param_groups[0]["lr"]
if before_lr != after_lr:
print("Epoch %d: Adam lr %.8f -> %.8f" % (epoch, before_lr, after_lr))

# Save the trained model
torch.save(model.state_dict(), "autoencoder" + name + '.pth')
print(model.encoder[0].weight.detach().numpy())

+ 249
- 0
data_loader.py View File

@@ -0,0 +1,249 @@
from utils import *
import os


class RawDataLoader:
@staticmethod
def load_data(data_modalities, raw_file_directory, screen_file_directory, sep):
"""
Load raw data and screening data, perform intersection, and adjust screening data.

Parameters:
- data_modalities (list): List of data modalities to load.
- raw_file_directory (str): Directory containing raw data files.
- screen_file_directory (str): Directory containing screening data files.
- sep (str): Separator used in the data files.

Returns:
- data (dict): Dictionary containing loaded raw data.
- drug_screen (pd.DataFrame): Adjusted and intersected screening data.
"""
# Step 1: Load raw data files for specified data modalities
data = RawDataLoader.load_raw_files(intersect=True, data_modalities=data_modalities,
raw_file_directory=raw_file_directory)

# Step 2: Load drug data files for specified data modalities
drug_data = RawDataLoader.load_raw_files(intersect=True, data_modalities=data_modalities,
raw_file_directory=DRUG_DATA_FOLDER)

# Step 3: Update the 'data' dictionary with drug data
data.update(drug_data)

# Step 4: Load and adjust drug screening data
drug_screen = RawDataLoader.load_screening_files(
filename=screen_file_directory,
sep=sep)
drug_screen, data = RawDataLoader.adjust_screening_raw(
drug_screen=drug_screen, data_dict=data)

# Step 5: Return the loaded data and adjusted drug screening data
return data, drug_screen


@staticmethod
def intersect_features(data1, data2):
"""
Perform intersection of features between two datasets.

Parameters:
- data1 (pd.DataFrame): First dataset.
- data2 (pd.DataFrame): Second dataset.

Returns:
- data1 (pd.DataFrame): First dataset with common columns.
- data2 (pd.DataFrame): Second dataset with common columns.
"""
# Step 1: Find common columns between the two datasets
common_columns = list(set(data1.columns) & set(data2.columns))

# Step 2: Filter data2 to include only common columns
data2 = data2[common_columns]
# Step 3: Filter data1 to include only common columns
data1 = data1[common_columns]

# Step 4: Return the datasets with intersected features
return data1, data2

@staticmethod
def data_features_intersect(data1, data2):
"""
Intersect features between two datasets column-wise.

Parameters:
- data1 (dict): Dictionary containing data modalities.
- data2 (dict): Dictionary containing data modalities.

Returns:
- intersected_data1 (dict): Data1 with intersected features.
- intersected_data2 (dict): Data2 with intersected features.
"""
# Iterate over each data modality
for i in data1:
# Intersect features for each modality
data1[i], data2[i] = RawDataLoader.intersect_features(data1[i], data2[i])
return data1, data2

@staticmethod
def load_file(address, index_column=None):
"""
Load data from a file based on its format.

Parameters:
- address (str): File address.
- index_column (str): Name of the index column.

Returns:
- data (pd.DataFrame): Loaded data from the file.
"""
data = []
try:
# Load data based on file format
if address.endswith('.txt') or address.endswith('.tsv'):
data.append(pd.read_csv(address, sep='\t', index_col=index_column), )
elif address.endswith('.csv'):
data.append(pd.read_csv(address))
elif address.endswith('.xlsx'):
data.append(pd.read_excel(address))
except FileNotFoundError:
print(f'File not found at address: {address}')

return data[0]


@staticmethod
def load_raw_files(raw_file_directory, data_modalities, intersect=True):
raw_dict = {}
files = os.listdir(raw_file_directory)
cell_line_names = None
drug_names = None
for file in tqdm(files, 'Reading Raw Data Files...'):
if any([file.startswith(x) for x in data_modalities]):
if file.endswith('_raw.gzip'):
df = pd.read_parquet(os.path.join(raw_file_directory, file))
elif file.endswith('_raw.tsv'):
df = pd.read_csv(os.path.join(raw_file_directory, file), sep='\t', index_col=0)
else:
continue
if df.index.is_numeric():
df = df.set_index(df.columns[0])
df = df.sort_index()
df = df.sort_index(axis=1)
df.columns = df.columns.str.replace('_cell_mut', '')
df.columns = df.columns.str.replace('_cell_CN', '')
df.columns = df.columns.str.replace('_cell_exp', '')



# Note that drug_comp raw table has some NA values so we should impute it
if any(df.isna()):
df = pd.DataFrame(SimpleImputer(strategy='mean').fit_transform(df),
columns=df.columns).set_index(df.index)
if file.startswith('drug_comp'): # We need to normalize the drug_data comp dataset
df = ((df - df.mean()) / df.std()).fillna(0)
elif file.startswith('drug_desc'): # We need to normalize the drug_data comp dataset
df = ((df - df.mean()) / df.std()).fillna(0)
if intersect:
if file.startswith('cell'):
if cell_line_names:
cell_line_names = cell_line_names.intersection(set(df.index))
else:
cell_line_names = set(df.index)
elif file.startswith('drug'):
if drug_names:
drug_names = drug_names.intersection(set(df.index))
else:
drug_names = set(df.index)
raw_dict[file[:file.find('_raw')]] = df
if intersect:
for key, value in raw_dict.items():
if key.startswith('cell'):
data = value.loc[list(cell_line_names)]
raw_dict[key] = data.loc[~data.index.duplicated()]
elif key.startswith('drug'):
data = value.loc[list(drug_names)]
raw_dict[key] = data.loc[~data.index.duplicated()]

return raw_dict

@staticmethod
def load_screening_files(filename="AUC_matS_comb.tsv", sep=',', ):
df = pd.read_csv(filename, sep=sep, index_col=0)
# df = df.drop(['Erlotinib','17-AAG','PD-0325901','PHA-665752','PHA-665752','TAE684','Sorafenib','PLX4720','selumetinib','PD-0332991','Paclitaxel','Nilotinib','Saracatinib'],axis=1)
return df
# return pd.read_csv(os.path.join(DATA_FOLDER, "drug_screening_matrix_GDSC.tsv"), sep='\t', index_col=0)

@staticmethod
def adjust_screening_raw(drug_screen, data_dict):
raw_cell_names = []
for key, value in data_dict.items():
if 'cell' in key:
if len(raw_cell_names) == 0:
raw_cell_names = value.index
else:
raw_cell_names = raw_cell_names.intersection(value.index)
elif 'drug' in key:
raw_drug_names = value.index

screening_cell_names = drug_screen.index
screening_drug_names = drug_screen.columns


common_cell_names = list(set(raw_cell_names).intersection(set(screening_cell_names)))
common_drug_names = list(set(raw_drug_names).intersection(set(screening_drug_names)))
for key, value in data_dict.items():
if 'cell' in key:
data_dict[key] = value.loc[common_cell_names]
else:
data_dict[key] = value.loc[common_drug_names]
return drug_screen.loc[common_cell_names, common_drug_names], data_dict

@staticmethod
def prepare_input_data(data_dict, screening):
print('Preparing data...')
resistance = np.argwhere((screening.to_numpy() == 1)).tolist()
resistance.sort(key=lambda x: (x[1], x[0]))
resistance = np.array(resistance)
sensitive = np.argwhere((screening.to_numpy() == -1)).tolist()
sensitive.sort(key=lambda x: (x[1], x[0]))
sensitive = np.array(sensitive)

print("sensitive train data len:", len(sensitive))
print("resistance train data len:", len(resistance))

A_train_mask = np.ones(len(resistance), dtype=bool)
B_train_mask = np.ones(len(sensitive), dtype=bool)
resistance = resistance[A_train_mask]
sensitive = sensitive[B_train_mask]
cell_data_types = list(filter(lambda x: x.startswith('cell'), data_dict.keys()))
cell_data_types.sort()
cell_data = pd.concat(
[pd.DataFrame(data_dict[data_type].add_suffix(f'_{data_type}'), dtype=np.float32) for
data_type in cell_data_types], axis=1)
cell_data_sizes = [data_dict[data_type].shape[1] for data_type in cell_data_types]

drug_data_types = list(filter(lambda x: x.startswith('drug'), data_dict.keys()))
drug_data_types.sort()
drug_data = pd.concat(
[pd.DataFrame(data_dict[data_type].add_suffix(f'_{data_type}'), dtype=np.float32, )
for data_type in drug_data_types], axis=1)
drug_data_sizes = [data_dict[data_type].shape[1] for data_type in drug_data_types]

Xp_cell = cell_data.iloc[resistance[:, 0], :]
Xp_drug = drug_data.iloc[resistance[:, 1], :]
Xp_cell = Xp_cell.reset_index(drop=True)
Xp_drug = Xp_drug.reset_index(drop=True)
Xp_cell.index = [f'({screening.index[x[0]]},{screening.columns[x[1]]})' for x in resistance]
Xp_drug.index = [f'({screening.index[x[0]]},{screening.columns[x[1]]})' for x in resistance]

Xn_cell = cell_data.iloc[sensitive[:, 0], :]
Xn_drug = drug_data.iloc[sensitive[:, 1], :]
Xn_cell = Xn_cell.reset_index(drop=True)
Xn_drug = Xn_drug.reset_index(drop=True)
Xn_cell.index = [f'({screening.index[x[0]]},{screening.columns[x[1]]})' for x in sensitive]
Xn_drug.index = [f'({screening.index[x[0]]},{screening.columns[x[1]]})' for x in sensitive]

X_cell = pd.concat([Xp_cell, Xn_cell])
X_drug = pd.concat([Xp_drug, Xn_drug])

Y = np.append(np.zeros(resistance.shape[0]), np.ones(sensitive.shape[0]))
return X_cell, X_drug, Y, cell_data_sizes, drug_data_sizes

+ 130
- 0
evaluation.py View File

@@ -0,0 +1,130 @@
from sklearn.metrics import roc_auc_score, average_precision_score, confusion_matrix, f1_score, precision_score, \
recall_score, accuracy_score

from utils import *


class Evaluation:
@staticmethod
def plot_train_val_accuracy(train_accuracies, val_accuracies, num_epochs):
plt.xlabel('epoch')
plt.ylabel('accuracy')
plt.title('h')
plt.plot(range(1, num_epochs + 1), train_accuracies)
plt.plot(range(1, num_epochs + 1), val_accuracies)
plt.show()

@staticmethod
def plot_train_val_loss(train_loss, val_loss, num_epochs):
plt.xlabel('epoch')
plt.ylabel('loss')
plt.title('h')
plt.plot(range(1, num_epochs + 1), train_loss)
plt.plot(range(1, num_epochs + 1), val_loss)
plt.show()

@staticmethod
def evaluate(all_targets, mlp_output, show_plot=True):
predicted_labels = np.where(mlp_output > 0.5, 1, 0)
# Collect predictions and targets for later evaluation
predicted_labels = predicted_labels.reshape(-1)
# Convert predictions and targets to numpy arrays
all_predictions = predicted_labels

# Calculate and print AUC
fpr, tpr, thresholds = metrics.roc_curve(all_targets, mlp_output)
auc = np.round(metrics.auc(fpr, tpr), 2)

# Calculate and print AUPRC
print(all_targets)
precision, recall, thresholds = metrics.precision_recall_curve(all_targets, mlp_output)
auprc = np.round(metrics.auc(recall, precision), 2)
# auprc = average_precision_score(all_targets, mlp_output)

print('Accuracy: {:.2f}'.format(np.round(accuracy_score(all_targets, all_predictions), 2)))
print('AUC: {:.2f}'.format(auc))
print('AUPRC: {:.2f}'.format(auprc))

# Calculate and print confusion matrix
cm = confusion_matrix(all_targets, all_predictions)
accuracy = cm.trace() / np.sum(cm)
precision = cm[0, 0] / (cm[0, 0] + cm[0, 1])
recall = cm[0, 0] / (cm[0, 0] + cm[1, 0])
f1_score = 2 * precision * recall / (precision + recall)
print('Confusion matrix:\n', cm, sep='')
print(f'Accuracy: {accuracy:.3f}, Precision: {precision:.3f}, Recall: {recall:.3f}, F1 score: {f1_score:.3f}')

if show_plot:
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title(f'ROC Curve: AUC={auc}')
plt.plot(fpr, tpr)
plt.show()
# print(f'AUC: {auc}')

plt.xlabel('Recall')
plt.ylabel('Precision')
plt.title(f'PR Curve: AUPRC={auprc}')
plt.plot(recall, precision)
plt.show()

prediction_targets = pd.DataFrame({}, columns=['Prediction', 'Target'])

res = pd.concat(
[pd.DataFrame(mlp_output.numpy(), ), pd.DataFrame(all_targets.numpy())], axis=1,
ignore_index=True)

res.columns = prediction_targets.columns
prediction_targets = pd.concat([prediction_targets, res])

class_one = prediction_targets.loc[prediction_targets['Target'] == 0, 'Prediction'].astype(
np.float32).tolist()
class_minus_one = prediction_targets.loc[prediction_targets['Target'] == 1, 'Prediction'].astype(
np.float32).tolist()

fig, ax = plt.subplots()
ax.set_ylabel("DeepDRA score")
xticklabels = ['Responder', 'Non Responder']
ax.set_xticks([1, 2])
ax.set_xticklabels(xticklabels)
data_to_plot = [class_minus_one, class_one]
plt.ylim(0, 1)
p_value = np.format_float_scientific(ttest_ind(class_one, class_minus_one)[1])
cancer = 'all'
plt.title(
f'Responder/Non responder scores for {cancer} cancer with \np-value ~= {p_value[0]}e{p_value[-3:]} ')
bp = ax.violinplot(data_to_plot, showextrema=True, showmeans=True, showmedians=True)
bp['cmeans'].set_color('r')
bp['cmedians'].set_color('g')
plt.show()

return {'Accuracy': accuracy, 'Precision': precision, 'Recall': recall, 'F1 score': f1_score, 'AUC': auc,
'AUPRC': auprc}

@staticmethod
def add_results(result_list, current_result):
result_list['AUC'].append(current_result['AUC'])
result_list['AUPRC'].append(current_result['AUPRC'])
result_list['Accuracy'].append(current_result['Accuracy'])
result_list['Precision'].append(current_result['Precision'])
result_list['Recall'].append(current_result['Recall'])
result_list['F1 score'].append(current_result['F1 score'])
return result_list

@staticmethod
def show_final_results(result_list):
print("Final Results:")
for i in range(len(result_list["AUC"])):
accuracy = result_list['Accuracy'][i]
precision = result_list['Precision'][i]
recall = result_list['Recall'][i]
f1_score = result_list['F1 score'][i]
auc = result_list['AUC'][i]
auprc = result_list['AUPRC'][i]

print(f'Accuracy: {accuracy:.3f}, Precision: {precision:.3f}, Recall: {recall:.3f}, F1 score: {f1_score:.3f}, AUC: {auc:.3f}, ,AUPRC: {auprc:.3f}')

avg_auc = np.mean(result_list['AUC'])
avg_auprc = np.mean(result_list['AUPRC'])
std_auprc = np.std(result_list['AUPRC'])
print(" Average AUC: {:.3f} \t Average AUPRC: {:.3f} \t Std AUPRC: {:.3f}".format(avg_auc, avg_auprc, std_auprc))

+ 159
- 0
main.py View File

@@ -0,0 +1,159 @@
from imblearn.under_sampling import RandomUnderSampler
from sklearn.model_selection import train_test_split

from torch.utils.data import TensorDataset, DataLoader, SubsetRandomSampler

from DeepDRA import DeepDRA, train, test
from data_loader import RawDataLoader
from evaluation import Evaluation
from utils import *
from mlp import MLP
import random
import torch
import numpy as np


def train_DeepDRA(x_cell_train, x_cell_test, x_drug_train, x_drug_test, y_train, y_test, cell_sizes, drug_sizes):
"""

Train and evaluate the DeepDRA model.

Parameters:
- X_cell_train (pd.DataFrame): Training data for the cell modality.
- X_cell_test (pd.DataFrame): Test data for the cell modality.
- X_drug_train (pd.DataFrame): Training data for the drug modality.
- X_drug_test (pd.DataFrame): Test data for the drug modality.
- y_train (pd.Series): Training labels.
- y_test (pd.Series): Test labels.
- cell_sizes (list): Sizes of the cell modality features.
- drug_sizes (list): Sizes of the drug modality features.

Returns:
- result: Evaluation result on the test set.
"""

# Step 1: Define the batch size for training
batch_size = 64

# Step 2: Instantiate the combined model
ae_latent_dim = 50
mlp_input_dim = 2 * ae_latent_dim
mlp_output_dim = 1
num_epochs = 20
model = DeepDRA(cell_sizes, drug_sizes, ae_latent_dim, ae_latent_dim, mlp_input_dim, mlp_output_dim)

# Step 3: Convert your training data to PyTorch tensors
x_cell_train_tensor = torch.Tensor(x_cell_train.values)
x_drug_train_tensor = torch.Tensor(x_drug_train.values)
x_cell_train_tensor = torch.nn.functional.normalize(x_cell_train_tensor, dim=0)
x_drug_train_tensor = torch.nn.functional.normalize(x_drug_train_tensor, dim=0)
y_train_tensor = torch.Tensor(y_train)
y_train_tensor = y_train_tensor.unsqueeze(1)

# Step 4: Create a TensorDataset with the input features and target labels
train_dataset = TensorDataset(x_cell_train_tensor, x_drug_train_tensor, y_train_tensor)

# Step 5: Create the train_loader
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)

# Step 6: Train the model
train(model, train_loader, num_epochs=num_epochs)

# Step 7: Save the trained model
torch.save(model, 'DeepDRA.pth')

# Step 8: Load the saved model
model = torch.load('DeepDRA.pth')

# Step 9: Convert your test data to PyTorch tensors
x_cell_test_tensor = torch.Tensor(x_cell_test.values)
x_drug_test_tensor = torch.Tensor(x_drug_test.values)
y_test_tensor = torch.Tensor(y_test)

# normalize data
x_cell_test_tensor = torch.nn.functional.normalize(x_cell_test_tensor, dim=0)
x_drug_test_tensor = torch.nn.functional.normalize(x_drug_test_tensor, dim=0)

# Step 10: Create a TensorDataset with the input features and target labels for testing
test_dataset = TensorDataset(x_cell_test_tensor, x_drug_test_tensor, y_test_tensor)
test_loader = DataLoader(test_dataset, batch_size=len(x_cell_test))

# Step 11: Test the model
return test(model, test_loader)


def run(k, is_test=False):
"""
Run the training and evaluation process k times.

Parameters:
- k (int): Number of times to run the process.
- is_test (bool): If True, run on test data; otherwise, perform train-validation split.

Returns:
- history (dict): Dictionary containing evaluation metrics for each run.
"""

# Step 1: Initialize a dictionary to store evaluation metrics
history = {'AUC': [], 'AUPRC': [], "Accuracy": [], "Precision": [], "Recall": [], "F1 score": []}

# Step 2: Load training data
train_data, train_drug_screen = RawDataLoader.load_data(data_modalities=DATA_MODALITIES,
raw_file_directory=GDSC_RAW_DATA_FOLDER,
screen_file_directory=GDSC_SCREENING_DATA_FOLDER,
sep="\t")

# Step 3: Load test data if applicable
if is_test:
test_data, test_drug_screen = RawDataLoader.load_data(data_modalities=DATA_MODALITIES,
raw_file_directory=CCLE_RAW_DATA_FOLDER,
screen_file_directory=CCLE_SCREENING_DATA_FOLDER,
sep="\t")
train_data, test_data = RawDataLoader.data_features_intersect(train_data, test_data)
X_cell_test, X_drug_test, y_test, cell_sizes, drug_sizes = RawDataLoader.prepare_input_data(test_data,
test_drug_screen)

# Step 4: Prepare input data for training
X_cell_train, X_drug_train, y_train, cell_sizes, drug_sizes = RawDataLoader.prepare_input_data(train_data,
train_drug_screen)

# Step 5: Loop over k runs
for i in range(k):
print('Run {}'.format(i))

# Step 6: If is_test is True, perform random under-sampling on the training data
if is_test:
rus = RandomUnderSampler(sampling_strategy="majority", random_state=RANDOM_SEED)
dataset = pd.concat([X_cell_train, X_drug_train], axis=1)
dataset.index = X_cell_train.index
dataset, y_train = rus.fit_resample(dataset, y_train)
X_cell_train = dataset.iloc[:, :sum(cell_sizes)]
X_drug_train = dataset.iloc[:, sum(cell_sizes):]

# Step 7: Train and evaluate the DeepDRA model on test data
results = train_DeepDRA(X_cell_train, X_cell_test, X_drug_train, X_drug_test, y_train, y_test, cell_sizes,
drug_sizes)
else:
# Step 8: Split the data into training and validation sets
X_cell_train, X_cell_test, X_drug_train, X_drug_test, y_train, y_test = train_test_split(X_cell_train,
X_drug_train, y_train,
test_size=0.2,
random_state=44,
shuffle=True)
# Step 9: Train and evaluate the DeepDRA model on the split data
results = train_DeepDRA(X_cell_train, X_cell_test, X_drug_train, X_drug_test, y_train, y_test, cell_sizes,
drug_sizes)

# Step 10: Add results to the history dictionary
Evaluation.add_results(history, results)

# Step 11: Display final results
Evaluation.show_final_results(history)
return history


if __name__ == '__main__':
torch.manual_seed(RANDOM_SEED)
random.seed(RANDOM_SEED)
np.random.seed(RANDOM_SEED)
run(10, is_test=True)

+ 128
- 0
mlp.py View File

@@ -0,0 +1,128 @@
from torch import nn
from torch import optim, no_grad
import torch
from evaluation import Evaluation
from utils import data_modalities_abbreviation
class EarlyStopper:
def __init__(self, patience=1, min_delta=0):
self.patience = patience
self.min_delta = min_delta
self.counter = 0
self.min_validation_loss = float('inf')

def early_stop(self, validation_loss):
if validation_loss < self.min_validation_loss:
self.min_validation_loss = validation_loss
self.counter = 0
elif validation_loss > (self.min_validation_loss + self.min_delta):
self.counter += 1
if self.counter >= self.patience:
return True
return False

class MLP(nn.Module):
def __init__(self, input_dim, output_dim):
super(MLP, self).__init__()

self.mlp = nn.Sequential(
nn.Linear(input_dim, 128),
nn.ReLU(inplace=True),
nn.Linear(128, output_dim),
nn.Hardsigmoid(),
)

def forward(self, x):
return self.mlp(x)


def train_mlp(model, train_loader, val_loader, num_epochs):
mlp_loss_fn = nn.BCELoss()

mlp_optimizer = optim.Adadelta(model.parameters(), lr=0.01,)
# scheduler = lr_scheduler.ReduceLROnPlateau(mlp_optimizer, mode='min', factor=0.8, patience=5, verbose=True)
train_accuracies = []
val_accuracies = []

train_loss = []
val_loss = []
early_stopper = EarlyStopper(patience=3, min_delta=0.05)

for epoch in range(num_epochs):
# Training
model.trainCombinedModel()
total_train_loss = 0.0
train_correct = 0
train_total_samples = 0
for batch_idx, (data, target) in enumerate(train_loader):
mlp_optimizer.zero_grad()
mlp_output = model(data)

mlp_loss = mlp_loss_fn(mlp_output, target)

mlp_loss.backward()
mlp_optimizer.step()

total_train_loss += mlp_loss.item()

# Calculate accuracy
train_predictions = torch.round(mlp_output)
train_correct += (train_predictions == target).sum().item()
train_total_samples += target.size(0)

# if batch_idx % 200 == 0:
# after_lr = mlp_optimizer.param_groups[0]["lr"]
# print('Epoch [{}/{}], Batch [{}/{}], Total Loss: {:.4f}, Learning Rate: {:.8f},'.format(
# epoch + 1, num_epochs, batch_idx + 1, len(train_loader), mlp_loss.item(), after_lr))

avg_train_loss = total_train_loss / len(train_loader)
train_loss.append(avg_train_loss)

# Validation
model.eval()
total_val_loss = 0.0
correct = 0
total_samples = 0
with torch.no_grad():
for val_batch_idx, (data, val_target) in enumerate(val_loader):
val_mlp_output = model(data)

val_mlp_loss = mlp_loss_fn(val_mlp_output, val_target)

total_val_loss += val_mlp_loss.item()

# Calculate accuracy
val_predictions = torch.round(val_mlp_output)
correct += (val_predictions == val_target).sum().item()
total_samples += val_target.size(0)

avg_val_loss = total_val_loss / len(val_loader)
val_loss.append(avg_val_loss)

train_accuracy = train_correct / train_total_samples
train_accuracies.append(train_accuracy)
val_accuracy = correct / total_samples
val_accuracies.append(val_accuracy)

print(
'Epoch [{}/{}], Train Loss: {:.4f}, Val Loss: {:.4f}, Train Accuracy: {:.4f}, Val Accuracy: {:.4f}'.format(
epoch + 1, num_epochs, avg_train_loss, avg_val_loss, train_accuracy,
val_accuracy))
# if early_stopper.early_stop(avg_val_loss):
# break
before_lr = mlp_optimizer.param_groups[0]["lr"]
# scheduler.step(avg_val_loss)
after_lr = mlp_optimizer.param_groups[0]["lr"]
if before_lr != after_lr:
print("Epoch %d: Adam lr %.8f -> %.8f" % (epoch, before_lr, after_lr))

Evaluation.plot_train_val_accuracy(train_accuracies, val_accuracies, epoch+1)
Evaluation.plot_train_val_loss(train_loss, val_loss, epoch+1)


def test_mlp(model, test_loader):
for i, (data, labels) in enumerate(test_loader):
model.eval()
with torch.no_grad():
mlp_output = model(data)
return Evaluation.evaluate(labels, mlp_output)


+ 116
- 0
utils.py View File

@@ -0,0 +1,116 @@
import os
import pandas as pd
import numpy as np
from tqdm import tqdm
import sklearn as sk
from matplotlib import pyplot as plt
from scipy.spatial.distance import pdist, squareform
import h2o
from h2o.estimators import H2ODeepLearningEstimator
from sklearn.impute import SimpleImputer
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, TensorDataset
import pickle
from sklearn import metrics
from copy import deepcopy
import pyreadr
import requests
from time import time
from math import ceil
from statsmodels.stats.weightstats import ttest_ind
import torch.optim.lr_scheduler as lr_scheduler
from sklearn.model_selection import KFold

DATA_FOLDER = 'data'
RES_DATA_FOLDER = os.path.join(DATA_FOLDER, 'res')
TEST_DATA_FOLDER = os.path.join(DATA_FOLDER, 'final_test_data')
TEST_TCGA_DATA_FOLDER = os.path.join(DATA_FOLDER, 'TCGA_test_data')
SIM_DATA_FOLDER = os.path.join(DATA_FOLDER, 'similarity_data')
RAW_DATA_FOLDER = os.path.join(DATA_FOLDER, 'raw_data')
RAW_BOTH_DATA_FOLDER = os.path.join(DATA_FOLDER, 'CTRP_GDSC_Data')
DRUG_DATA_FOLDER = os.path.join(DATA_FOLDER, 'drug_data')

NEW_RAW_DATA_FOLDER = os.path.join(DATA_FOLDER, 'new_raw_data')
GDSC_RAW_DATA_FOLDER = os.path.join(DATA_FOLDER, 'GDSC_data')
CCLE_RAW_DATA_FOLDER = os.path.join(DATA_FOLDER, 'CCLE_raw')

CTRP_FOLDER = os.path.join(DATA_FOLDER, 'CTRP')
GDSC_FOLDER = os.path.join(DATA_FOLDER, 'GDSC')
CCLE_FOLDER = os.path.join(DATA_FOLDER, 'CCLE')

MODEL_FOLDER = os.path.join(DATA_FOLDER, 'model')

CTRP_EXPERIMENT_FILE = os.path.join(CTRP_FOLDER, 'v20.meta.per_experiment.txt')
CTRP_COMPOUND_FILE = os.path.join(CTRP_FOLDER, 'v20.meta.per_compound.txt')
CTRP_CELLLINE_FILE = os.path.join(CTRP_FOLDER, 'v20.meta.per_cell_line.txt')
CTRP_AUC_FILE = os.path.join(CTRP_FOLDER, 'v20.data.curves_post_qc.txt')

GDSC_AUC_FILE = os.path.join(GDSC_FOLDER, 'GDSC2_fitted_dose_response.csv')
GDSC_cnv_data_FILE = os.path.join(GDSC_FOLDER, 'cnv_abs_copy_number_picnic_20191101.csv')
GDSC_methy_data_FILE = os.path.join(GDSC_FOLDER, 'F2_METH_CELL_DATA.txt')
GDSC_methy_sampleIds_FILE = os.path.join(GDSC_FOLDER, 'methSampleId_2_cosmicIds.xlsx')
GDSC_exp_data_FILE = os.path.join(GDSC_FOLDER, 'Cell_line_RMA_proc_basalExp.txt')
GDSC_exp_sampleIds_FILE = os.path.join(GDSC_FOLDER, 'E-MTAB-3610.sdrf.txt')
GDSC_mut_data_FILE = os.path.join(GDSC_FOLDER, 'mutations_all_20230202.csv')
GDSC_SCREENING_DATA_FOLDER = os.path.join(GDSC_RAW_DATA_FOLDER, 'drug_screening_matrix_GDSC.tsv')
CCLE_SCREENING_DATA_FOLDER = os.path.join(CCLE_RAW_DATA_FOLDER, 'drug_screening_matrix_ccle.tsv')
BOTH_SCREENING_DATA_FOLDER = os.path.join(RAW_BOTH_DATA_FOLDER, 'drug_screening_matrix_gdsc_ctrp.tsv')

CCLE_mut_data_FILE = os.path.join(CCLE_FOLDER, 'CCLE_mutations.csv')

TABLE_RESULTS_FILE = os.path.join(DATA_FOLDER, 'drug_screening_table.tsv')
MATRIX_RESULTS_FILE = os.path.join(DATA_FOLDER, 'drug_screening_matrix.tsv')

MODEL_FILE = os.path.join(MODEL_FOLDER, 'trained_model_V1_EMDP.sav')
TEST_FILE = os.path.join(TEST_DATA_FOLDER, 'test.gzip')
RESULT_FILE = os.path.join(RES_DATA_FOLDER, 'result.tsv')

TCGA_DATA_FOLDER = os.path.join(DATA_FOLDER, 'TCGA_test_data')
TCGA_SCREENING_DATA = os.path.join(TCGA_DATA_FOLDER, 'TCGA_screening_matrix.tsv')

BUILD_SIM_MATRICES = True # Make this variable True to build similarity matrices from raw data
SIM_KERNEL = {'cell_CN': ('euclidean', 0.001), 'cell_exp': ('euclidean', 0.01), 'cell_methy': ('euclidean', 0.1),
'cell_mut': ('jaccard', 1), 'drug_DT': ('jaccard', 1), 'drug_comp': ('euclidean', 0.001),
'drug_desc': ('euclidean', 0.001), 'drug_finger': ('euclidean', 0.001)}
SAVE_MODEL = False # Change it to True to save the trained model
VARIATIONAL_AUTOENCODERS = False
# DATA_MODALITIES=['cell_CN','cell_exp','cell_methy','cell_mut','drug_comp','drug_DT'] # Change this list to only consider specific data modalities
DATA_MODALITIES = ['cell_mut', 'drug_desc', 'drug_finger']
RANDOM_SEED = 42 # Must be used wherever can be used


def data_modalities_abbreviation():
abb = []
if 'cell_CN' in DATA_MODALITIES:
abb.append('C')
if 'cell_exp' in DATA_MODALITIES:
abb.append('E')
if 'cell_mut' in DATA_MODALITIES:
abb.append('M')
if 'cell_methy' in DATA_MODALITIES:
abb.append('T')
if 'drug_DT' in DATA_MODALITIES:
abb.append('D')
if 'drug_comp' in DATA_MODALITIES:
abb.append('P')
return ''.join(abb)


""" TRAIN_INTEGRATION_METHOD used for each cell's and drug_data's data definitions:
SIMILARITY: A kernel based integration method in which based on the similarity of each cell's data with the training cell's
data the input features for the multi layer perceptron (MLP) is constructed. The similarity function used could be different for
each data modality (euclidean, jaccard,l1_norm, or ...)

AUTO_ENCODER_V1: In this version of integrating multi-omics, for each data modality an autoencoder is trained to reduce the
dimension of the features and finally a concatenation of each autoencoder's latent space builds up the input layer of the MLP.

AUTO_ENCODER_V2: In this version of integrating multi-omics data, we train a big autoencoder which reduces the dimension of
all the different data modalities features at the same time to a smaller feature space. This version of integrating could
take a lot of memory and time to integrate the data and might be computationally expensive.

AUTO_ENCODER_V3: IN this version of integrating multi-omics data, we train an autoencoder for all the modalities kinda same as
the autoencoder version 2 but with this difference that the encoder and decoder layers are separate from each other and
just the latent layer is shared among different data modalities.
"""

Loading…
Cancel
Save