| @@ -14,7 +14,7 @@ import numpy as np | |||
| import pandas as pd | |||
| def train_DeepDRA(x_cell_train, x_cell_test, x_drug_train, x_drug_test, y_train, y_test, cell_sizes, drug_sizes): | |||
| def train_DeepDRA(x_cell_train, x_cell_test, x_drug_train, x_drug_test, y_train, y_test, cell_sizes, drug_sizes,device): | |||
| """ | |||
| Train and evaluate the DeepDRA model. | |||
| @@ -42,7 +42,7 @@ def train_DeepDRA(x_cell_train, x_cell_test, x_drug_train, x_drug_test, y_train, | |||
| mlp_output_dim = 1 | |||
| num_epochs = 25 | |||
| model = DeepDRA(cell_sizes, drug_sizes, ae_latent_dim, ae_latent_dim, mlp_input_dim, mlp_output_dim) | |||
| model.to(device) | |||
| # Step 3: Convert your training data to PyTorch tensors | |||
| x_cell_train_tensor = torch.Tensor(x_cell_train.values) | |||
| x_drug_train_tensor = torch.Tensor(x_drug_train.values) | |||
| @@ -51,6 +51,9 @@ def train_DeepDRA(x_cell_train, x_cell_test, x_drug_train, x_drug_test, y_train, | |||
| y_train_tensor = torch.Tensor(y_train) | |||
| y_train_tensor = y_train_tensor.unsqueeze(1) | |||
| x_cell_train_tensor.to(device) | |||
| x_drug_train_tensor.to(device) | |||
| y_train_tensor.to(device) | |||
| # Compute class weights | |||
| classes = [0, 1] # Assuming binary classification | |||
| class_weights = torch.tensor(compute_class_weight(class_weight='balanced', classes=classes, y=y_train), | |||
| @@ -70,7 +73,6 @@ def train_DeepDRA(x_cell_train, x_cell_test, x_drug_train, x_drug_test, y_train, | |||
| train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) | |||
| val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=True) | |||
| # Step 6: Train the model | |||
| train(model, train_loader, val_loader, num_epochs,class_weights) | |||
| @@ -108,7 +110,9 @@ def run(k, is_test=False): | |||
| Returns: | |||
| - history (dict): Dictionary containing evaluation metrics for each run. | |||
| """ | |||
| device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |||
| print(torch.cuda.is_available()) | |||
| torch.zeros(1).cuda() | |||
| # Step 1: Initialize a dictionary to store evaluation metrics | |||
| history = {'AUC': [], 'AUPRC': [], "Accuracy": [], "Precision": [], "Recall": [], "F1 score": []} | |||
| @@ -148,7 +152,7 @@ def run(k, is_test=False): | |||
| # Step 7: Train and evaluate the DeepDRA model on test data | |||
| results = train_DeepDRA(X_cell_train, X_cell_test, X_drug_train, X_drug_test, y_train, y_test, cell_sizes, | |||
| drug_sizes) | |||
| drug_sizes, device) | |||
| else: | |||
| # Step 8: Split the data into training and validation sets | |||
| X_cell_train, X_cell_test, X_drug_train, X_drug_test, y_train, y_test = train_test_split(X_cell_train, | |||
| @@ -158,7 +162,7 @@ def run(k, is_test=False): | |||
| shuffle=True) | |||
| # Step 9: Train and evaluate the DeepDRA model on the split data | |||
| results = train_DeepDRA(X_cell_train, X_cell_test, X_drug_train, X_drug_test, y_train, y_test, cell_sizes, | |||
| drug_sizes) | |||
| drug_sizes, device) | |||
| # Step 10: Add results to the history dictionary | |||
| Evaluation.add_results(history, results) | |||