#!/usr/bin/env python | |||||
import click as ck | |||||
import numpy as np | |||||
import pandas as pd | |||||
from keras.models import load_model | |||||
from aaindex import INVALID_ACIDS | |||||
MAXLEN = 1002 | |||||
@ck.command() | |||||
@ck.option('--in-file', '-i', help='Input FASTA file', required=True) | |||||
@ck.option('--threshold', '-t', default=0.3, help='Prediction threshold') | |||||
@ck.option('--batch-size', '-bs', default=1, help='Batch size for prediction model') | |||||
@ck.option('--include-long-seq', '-ils', is_flag=True, help='Include long sequences') | |||||
@ck.option('--onto', '-go', default='bp', help='Sub-ontology to be predicted: bp, mf, cc') | |||||
def main(in_file, threshold, batch_size, include_long_seq, onto): | |||||
out_file = onto +'_results.txt' | |||||
chunk_size = 1000 | |||||
global model | |||||
global functions | |||||
ngram_df = pd.read_pickle('data/models/ngrams.pkl') | |||||
global vocab | |||||
vocab = {} | |||||
global gram_len | |||||
for key, gram in enumerate(ngram_df['ngrams']): | |||||
vocab[gram] = key + 1 | |||||
gram_len = len(ngram_df['ngrams'][0]) | |||||
print(('Gram length:', gram_len)) | |||||
print(('Vocabulary size:', len(vocab))) | |||||
model = load_model('Data/data1/models/model_%s.h5' % onto) | |||||
df = pd.read_pickle('Data/data1/models/%s.pkl' % onto) | |||||
functions = df['functions'] | |||||
w = open(out_file, 'w') | |||||
for ids, sequences in read_fasta(in_file, chunk_size, include_long_seq): | |||||
data = get_data(sequences) | |||||
results = predict(data, model, threshold, batch_size) | |||||
for i in range(len(ids)): | |||||
w.write(ids[i]) | |||||
w.write('\n') | |||||
for res in results[i]: | |||||
w.write(res) | |||||
w.write('\n') | |||||
w.close() | |||||
def is_ok(seq): | |||||
for c in seq: | |||||
if c in INVALID_ACIDS: | |||||
return False | |||||
return True | |||||
def read_fasta(filename, chunk_size, include_long_seq): | |||||
seqs = list() | |||||
info = list() | |||||
seq = '' | |||||
inf = '' | |||||
with open(filename) as f: | |||||
for line in f: | |||||
line = line.strip() | |||||
if line.startswith('>'): | |||||
if seq != '': | |||||
if is_ok(seq): | |||||
if include_long_seq: | |||||
seqs.append(seq) | |||||
info.append(inf) | |||||
if len(info) == chunk_size: | |||||
yield (info, seqs) | |||||
seqs = list() | |||||
info = list() | |||||
elif len(seq) <= MAXLEN: | |||||
seqs.append(seq) | |||||
info.append(inf) | |||||
if len(info) == chunk_size: | |||||
yield (info, seqs) | |||||
seqs = list() | |||||
info = list() | |||||
else: | |||||
print(('Ignoring sequence {} because its length > 1002' | |||||
.format(inf))) | |||||
else: | |||||
print(('Ignoring sequence {} because of ambigious AA' | |||||
.format(inf))) | |||||
seq = '' | |||||
inf = line[1:].split()[0] | |||||
else: | |||||
seq += line | |||||
seqs.append(seq) | |||||
info.append(inf) | |||||
yield (info, seqs) | |||||
def get_data(sequences): | |||||
n = len(sequences) | |||||
data = np.zeros((n, 1000), dtype=np.float32) | |||||
for i in range(len(sequences)): | |||||
seq = sequences[i] | |||||
for j in range(min(MAXLEN, len(seq)) - gram_len + 1): | |||||
data[i, j] = vocab[seq[j: (j + gram_len)]] | |||||
return data | |||||
def predict(data, model, threshold, batch_size): | |||||
n = data.shape[0] | |||||
result = list() | |||||
for i in range(n): | |||||
result.append(list()) | |||||
predictions = model.predict(data, batch_size=batch_size, verbose=1) | |||||
for i in range(n): | |||||
pred = (predictions[i] >= threshold).astype('int32') | |||||
for j in range(len(functions)): | |||||
if pred[j] == 1: | |||||
result[i].append(functions[j] + ' with score ' + '%.2f' % predictions[i][j]) | |||||
return result | |||||
if __name__ == '__main__': | |||||
main() |
from functools import partial | |||||
import numpy as np | |||||
from keras import backend as K | |||||
from keras.layers import Input, RepeatVector, Multiply, Lambda, Permute | |||||
from keras.layers.merge import _Merge | |||||
from keras.models import Model | |||||
from keras.optimizers import Adam, SGD | |||||
from keras.losses import binary_crossentropy | |||||
def wasserstein_loss(y_true, y_pred): | |||||
return K.mean(-y_true * y_pred) | |||||
def generator_recunstruction_loss(y_true, y_pred, enableTrain): | |||||
def rescale_back_labels(labels): | |||||
rescaled_back_labels = (labels / 2) + 0.5 | |||||
return rescaled_back_labels | |||||
return binary_crossentropy(rescale_back_labels(y_true), rescale_back_labels(y_pred)) #* enableTrain | |||||
global enable_train | |||||
enable_train = Input(shape = (1,)) | |||||
global generator_recunstruction_loss_new | |||||
generator_recunstruction_loss_new = partial(generator_recunstruction_loss, enableTrain = enable_train) | |||||
generator_recunstruction_loss_new.__name__ = 'generator_recunstruction_loss_new' | |||||
def gradient_penalty_loss(y_true, y_pred, averaged_samples, gradient_penalty_weight): | |||||
"""Calculates the gradient penalty loss for a batch of "averaged" samples. | |||||
In Improved WGANs, the 1-Lipschitz constraint is enforced by adding a term to the loss function | |||||
that penalizes the network if the gradient norm moves away from 1. However, it is impossible to evaluate | |||||
this function at all points in the input space. The compromise used in the paper is to choose random points | |||||
on the lines between real and generated samples, and check the gradients at these points. Note that it is the | |||||
gradient w.r.t. the input averaged samples, not the weights of the discriminator, that we're penalizing! | |||||
In order to evaluate the gradients, we must first run samples through the generator and evaluate the loss. | |||||
Then we get the gradients of the discriminator w.r.t. the input averaged samples. | |||||
The l2 norm and penalty can then be calculated for this gradient. | |||||
Note that this loss function requires the original averaged samples as input, but Keras only supports passing | |||||
y_true and y_pred to loss functions. To get around this, we make a partial() of the function with the | |||||
averaged_samples argument, and use that for model training.""" | |||||
# first get the gradients: | |||||
# assuming: - that y_pred has dimensions (batch_size, 1) | |||||
# - averaged_samples has dimensions (batch_size, nbr_features) | |||||
# gradients afterwards has dimension (batch_size, nbr_features), basically | |||||
# a list of nbr_features-dimensional gradient vectors | |||||
gradients = K.gradients(y_pred, averaged_samples)[0] | |||||
# compute the euclidean norm by squaring ... | |||||
gradients_sqr = K.square(gradients) | |||||
# ... summing over the rows ... | |||||
gradients_sqr_sum = K.sum(gradients_sqr, | |||||
axis=np.arange(1, len(gradients_sqr.shape))) | |||||
# ... and sqrt | |||||
gradient_l2_norm = K.sqrt(gradients_sqr_sum) | |||||
# compute lambda * (1 - ||grad||)^2 still for each single sample | |||||
gradient_penalty = gradient_penalty_weight * K.square(1 - gradient_l2_norm) | |||||
# return the mean as loss over all the batch samples | |||||
return K.mean(gradient_penalty) | |||||
def WGAN_wrapper(generator, discriminator, generator_input_shape, discriminator_input_shape, discriminator_input_shape2, | |||||
batch_size, gradient_penalty_weight, embeddings): | |||||
BATCH_SIZE = batch_size | |||||
GRADIENT_PENALTY_WEIGHT = gradient_penalty_weight | |||||
def set_trainable_state(model, state): | |||||
for layer in model.layers: | |||||
layer.trainable = state | |||||
model.trainable = state | |||||
class RandomWeightedAverage(_Merge): | |||||
"""Takes a randomly-weighted average of two tensors. In geometric terms, this outputs a random point on the line | |||||
between each pair of input points. | |||||
Inheriting from _Merge is a little messy but it was the quickest solution I could think of. | |||||
Improvements appreciated.""" | |||||
def _merge_function(self, inputs): | |||||
weights = K.random_uniform((BATCH_SIZE, 1)) | |||||
print(inputs[0]) | |||||
return (weights * inputs[0]) + ((1 - weights) * inputs[1]) | |||||
# The generator_model is used when we want to train the generator layers. | |||||
# As such, we ensure that the discriminator layers are not trainable. | |||||
# Note that once we compile this model, updating .trainable will have no effect within it. As such, it | |||||
# won't cause problems if we later set discriminator.trainable = True for the discriminator_model, as long | |||||
# as we compile the generator_model first. | |||||
def mul(input): | |||||
embedds = K.variable(np.expand_dims(embeddings.T, 0), dtype='float32') | |||||
batch_size = K.shape(input)[0] | |||||
expanded_embed = K.tile(embedds, (batch_size, 1, 1)) | |||||
expanded_input = RepeatVector(100)(input) | |||||
masked = Multiply()([expanded_embed, expanded_input]) | |||||
return K.permute_dimensions(masked, [0,2,1]) | |||||
set_trainable_state(discriminator, False) | |||||
set_trainable_state(generator, True) | |||||
#enable_train = Input(shape = (1,)) | |||||
generator_input = Input(shape=generator_input_shape) | |||||
generator_layers = generator(generator_input) | |||||
#masked_generator_layers = Lambda(mul)(generator_layers) | |||||
#discriminator_noise_in = Input(shape=(1,)) | |||||
#input_seq_g = Input(shape = discriminator_input_shape2) | |||||
discriminator_layers_for_generator= discriminator([generator_layers, generator_input]) | |||||
generator_model = Model(inputs=[generator_input, enable_train], | |||||
outputs=[generator_layers, discriminator_layers_for_generator]) | |||||
# We use the Adam paramaters from Gulrajani et al. | |||||
#global generator_recunstruction_loss_new | |||||
#generator_recunstruction_loss_new = partial(generator_recunstruction_loss, enableTrain = enable_train) | |||||
#generator_recunstruction_loss_new.__name__ = 'generator_RLN' | |||||
loss = [generator_recunstruction_loss_new, wasserstein_loss] | |||||
loss_weights = [10000, 1] | |||||
generator_model.compile(optimizer=Adam(lr=1E-4, beta_1=0.9, beta_2=0.999, epsilon=1e-08), | |||||
loss=loss, loss_weights=loss_weights) | |||||
# Now that the generator_model is compiled, we can make the discriminator layers trainable. | |||||
set_trainable_state(discriminator, True) | |||||
set_trainable_state(generator, False) | |||||
# The discriminator_model is more complex. It takes both real image samples and random noise seeds as input. | |||||
# The noise seed is run through the generator model to get generated images. Both real and generated images | |||||
# are then run through the discriminator. Although we could concatenate the real and generated images into a | |||||
# single tensor, we don't (see model compilation for why). | |||||
real_samples = Input(shape=discriminator_input_shape) | |||||
input_seq = Input(shape = discriminator_input_shape2) | |||||
generator_input_for_discriminator = Input(shape=generator_input_shape) | |||||
generated_samples_for_discriminator = generator(generator_input_for_discriminator) | |||||
#masked_real_samples = Lambda(mul)(real_samples) | |||||
#masked_generated_samples_for_discriminator= Lambda(mul)(generated_samples_for_discriminator) | |||||
discriminator_output_from_generator = discriminator([generated_samples_for_discriminator, generator_input_for_discriminator]) | |||||
discriminator_output_from_real_samples= discriminator([real_samples, input_seq]) | |||||
# We also need to generate weighted-averages of real and generated samples, to use for the gradient norm penalty. | |||||
averaged_samples = RandomWeightedAverage()([real_samples, generated_samples_for_discriminator]) | |||||
average_seq = RandomWeightedAverage()([input_seq, generator_input_for_discriminator]) | |||||
# We then run these samples through the discriminator as well. Note that we never really use the discriminator | |||||
# output for these samples - we're only running them to get the gradient norm for the gradient penalty loss. | |||||
#print('hehehe') | |||||
#print(averaged_samples) | |||||
#masked_averaged_samples = Lambda(mul)(averaged_samples) | |||||
averaged_samples_out = discriminator([averaged_samples, average_seq]) | |||||
# The gradient penalty loss function requires the input averaged samples to get gradients. However, | |||||
# Keras loss functions can only have two arguments, y_true and y_pred. We get around this by making a partial() | |||||
# of the function with the averaged samples here. | |||||
partial_gp_loss = partial(gradient_penalty_loss, | |||||
averaged_samples=averaged_samples, | |||||
gradient_penalty_weight=GRADIENT_PENALTY_WEIGHT) | |||||
partial_gp_loss.__name__ = 'gradient_penalty' # Functions need names or Keras will throw an error | |||||
# Keras requires that inputs and outputs have the same number of samples. This is why we didn't concatenate the | |||||
# real samples and generated samples before passing them to the discriminator: If we had, it would create an | |||||
# output with 2 * BATCH_SIZE samples, while the output of the "averaged" samples for gradient penalty | |||||
# would have only BATCH_SIZE samples. | |||||
# If we don't concatenate the real and generated samples, however, we get three outputs: One of the generated | |||||
# samples, one of the real samples, and one of the averaged samples, all of size BATCH_SIZE. This works neatly! | |||||
discriminator_model = Model(inputs=[real_samples, generator_input_for_discriminator, input_seq], | |||||
outputs=[discriminator_output_from_real_samples, | |||||
discriminator_output_from_generator, | |||||
averaged_samples_out]) | |||||
loss_weights2 = [1, 1, 1] | |||||
# We use the Adam paramaters from Gulrajani et al. We use the Wasserstein loss for both the real and generated | |||||
# samples, and the gradient penalty loss for the averaged samples. | |||||
discriminator_model.compile(optimizer=SGD(clipvalue=0.01), # Adam(lr=4E-4, beta_1=0.9, beta_2=0.999, epsilon=1e-08), | |||||
loss=[wasserstein_loss, | |||||
wasserstein_loss, | |||||
partial_gp_loss], loss_weights = loss_weights2) | |||||
# set_trainable_state(discriminator, True) | |||||
# set_trainable_state(generator, True) | |||||
return generator_model, discriminator_model |
from functools import partial | |||||
import numpy as np | |||||
from keras import backend as K | |||||
from keras.layers import Input, RepeatVector, Multiply, Lambda, Permute | |||||
from keras.layers.merge import _Merge | |||||
from keras.models import Model | |||||
from keras.optimizers import Adam, SGD | |||||
from keras.losses import binary_crossentropy | |||||
def wasserstein_loss(y_true, y_pred): | |||||
"""Calculates the Wasserstein loss for a sample batch. | |||||
The Wasserstein loss function is very simple to calculate. In a standard GAN, the discriminator | |||||
has a sigmoid output, representing the probability that samples are real or generated. In Wasserstein | |||||
GANs, however, the output is linear with no activation function! Instead of being constrained to [0, 1], | |||||
the discriminator wants to make the distance between its output for real and generated samples as large as possible. | |||||
The most natural way to achieve this is to label generated samples -1 and real samples 1, instead of the | |||||
0 and 1 used in normal GANs, so that multiplying the outputs by the labels will give you the loss immediately. | |||||
Note that the nature of this loss means that it can be (and frequently will be) less than 0.""" | |||||
return K.mean(-y_true * y_pred) | |||||
def generator_recunstruction_loss(y_true, y_pred, enableTrain): | |||||
def rescale_back_labels(labels): | |||||
rescaled_back_labels = (labels / 2) + 0.5 | |||||
return rescaled_back_labels | |||||
return binary_crossentropy(rescale_back_labels(y_true), rescale_back_labels(y_pred)) # * enableTrain | |||||
global enable_train | |||||
enable_train = Input(shape=(1,)) | |||||
global generator_recunstruction_loss_new | |||||
generator_recunstruction_loss_new = partial(generator_recunstruction_loss, enableTrain=enable_train) | |||||
generator_recunstruction_loss_new.__name__ = 'generator_recunstruction_loss_new' | |||||
def gradient_penalty_loss(y_true, y_pred, averaged_samples, gradient_penalty_weight): | |||||
"""Calculates the gradient penalty loss for a batch of "averaged" samples. | |||||
In Improved WGANs, the 1-Lipschitz constraint is enforced by adding a term to the loss function | |||||
that penalizes the network if the gradient norm moves away from 1. However, it is impossible to evaluate | |||||
this function at all points in the input space. The compromise used in the paper is to choose random points | |||||
on the lines between real and generated samples, and check the gradients at these points. Note that it is the | |||||
gradient w.r.t. the input averaged samples, not the weights of the discriminator, that we're penalizing! | |||||
In order to evaluate the gradients, we must first run samples through the generator and evaluate the loss. | |||||
Then we get the gradients of the discriminator w.r.t. the input averaged samples. | |||||
The l2 norm and penalty can then be calculated for this gradient. | |||||
Note that this loss function requires the original averaged samples as input, but Keras only supports passing | |||||
y_true and y_pred to loss functions. To get around this, we make a partial() of the function with the | |||||
averaged_samples argument, and use that for model training.""" | |||||
# first get the gradients: | |||||
# assuming: - that y_pred has dimensions (batch_size, 1) | |||||
# - averaged_samples has dimensions (batch_size, nbr_features) | |||||
# gradients afterwards has dimension (batch_size, nbr_features), basically | |||||
# a list of nbr_features-dimensional gradient vectors | |||||
gradients = K.gradients(y_pred, averaged_samples)[0] | |||||
# compute the euclidean norm by squaring ... | |||||
gradients_sqr = K.square(gradients) | |||||
# ... summing over the rows ... | |||||
gradients_sqr_sum = K.sum(gradients_sqr, | |||||
axis=np.arange(1, len(gradients_sqr.shape))) | |||||
# ... and sqrt | |||||
gradient_l2_norm = K.sqrt(gradients_sqr_sum) | |||||
# compute lambda * (1 - ||grad||)^2 still for each single sample | |||||
gradient_penalty = gradient_penalty_weight * K.square(1 - gradient_l2_norm) | |||||
# return the mean as loss over all the batch samples | |||||
return K.mean(gradient_penalty) | |||||
def WGAN_wrapper(generator, discriminator, generator_input_shape, discriminator_input_shape, discriminator_input_shape2, | |||||
batch_size, gradient_penalty_weight): | |||||
BATCH_SIZE = batch_size | |||||
GRADIENT_PENALTY_WEIGHT = gradient_penalty_weight | |||||
def set_trainable_state(model, state): | |||||
for layer in model.layers: | |||||
layer.trainable = state | |||||
model.trainable = state | |||||
class RandomWeightedAverage(_Merge): | |||||
"""Takes a randomly-weighted average of two tensors. In geometric terms, this outputs a random point on the line | |||||
between each pair of input points. | |||||
Inheriting from _Merge is a little messy but it was the quickest solution I could think of. | |||||
Improvements appreciated.""" | |||||
def _merge_function(self, inputs): | |||||
weights = K.random_uniform((BATCH_SIZE, 1)) | |||||
print(inputs[0]) | |||||
return (weights * inputs[0]) + ((1 - weights) * inputs[1]) | |||||
# The generator_model is used when we want to train the generator layers. | |||||
# As such, we ensure that the discriminator layers are not trainable. | |||||
# Note that once we compile this model, updating .trainable will have no effect within it. As such, it | |||||
# won't cause problems if we later set discriminator.trainable = True for the discriminator_model, as long | |||||
# as we compile the generator_model first. | |||||
set_trainable_state(discriminator, False) | |||||
set_trainable_state(generator, True) | |||||
# enable_train = Input(shape = (1,)) | |||||
generator_input = Input(shape=generator_input_shape) | |||||
generator_layers = generator(generator_input) | |||||
# masked_generator_layers = Lambda(mul)(generator_layers) | |||||
# discriminator_noise_in = Input(shape=(1,)) | |||||
# input_seq_g = Input(shape = discriminator_input_shape2) | |||||
discriminator_layers_for_generator= discriminator([generator_layers, generator_input]) | |||||
generator_model = Model(inputs=[generator_input, enable_train], | |||||
outputs=[generator_layers, discriminator_layers_for_generator]) | |||||
# We use the Adam paramaters from Gulrajani et al. | |||||
# global generator_recunstruction_loss_new | |||||
# generator_recunstruction_loss_new = partial(generator_recunstruction_loss, enableTrain = enable_train) | |||||
# generator_recunstruction_loss_new.__name__ = 'generator_RLN' | |||||
loss = [generator_recunstruction_loss_new, wasserstein_loss] | |||||
loss_weights = [0, 1] | |||||
generator_model.compile(optimizer=Adam(lr=1E-4, beta_1=0.9, beta_2=0.999, epsilon=1e-08), | |||||
loss=loss, loss_weights=loss_weights) | |||||
# Now that the generator_model is compiled, we can make the discriminator layers trainable. | |||||
set_trainable_state(discriminator, True) | |||||
set_trainable_state(generator, False) | |||||
# The discriminator_model is more complex. It takes both real image samples and random noise seeds as input. | |||||
# The noise seed is run through the generator model to get generated images. Both real and generated images | |||||
# are then run through the discriminator. Although we could concatenate the real and generated images into a | |||||
# single tensor, we don't (see model compilation for why). | |||||
real_samples = Input(shape=discriminator_input_shape) | |||||
input_seq = Input(shape=discriminator_input_shape2) | |||||
generator_input_for_discriminator = Input(shape=generator_input_shape) | |||||
generated_samples_for_discriminator = generator(generator_input_for_discriminator) | |||||
# masked_real_samples = Lambda(mul)(real_samples) | |||||
# masked_generated_samples_for_discriminator= Lambda(mul)(generated_samples_for_discriminator) | |||||
discriminator_output_from_generator = discriminator( | |||||
[generated_samples_for_discriminator, generator_input_for_discriminator]) | |||||
discriminator_output_from_real_samples= discriminator([real_samples, input_seq]) | |||||
# We also need to generate weighted-averages of real and generated samples, to use for the gradient norm penalty. | |||||
averaged_samples = RandomWeightedAverage()([real_samples, generated_samples_for_discriminator]) | |||||
average_seq = RandomWeightedAverage()([input_seq, generator_input_for_discriminator]) | |||||
# We then run these samples through the discriminator as well. Note that we never really use the discriminator | |||||
# output for these samples - we're only running them to get the gradient norm for the gradient penalty loss. | |||||
# print('hehehe') | |||||
# print(averaged_samples) | |||||
# masked_averaged_samples = Lambda(mul)(averaged_samples) | |||||
averaged_samples_out = discriminator([averaged_samples, average_seq]) | |||||
# The gradient penalty loss function requires the input averaged samples to get gradients. However, | |||||
# Keras loss functions can only have two arguments, y_true and y_pred. We get around this by making a partial() | |||||
# of the function with the averaged samples here. | |||||
partial_gp_loss = partial(gradient_penalty_loss, | |||||
averaged_samples=averaged_samples, | |||||
gradient_penalty_weight=GRADIENT_PENALTY_WEIGHT) | |||||
partial_gp_loss.__name__ = 'gradient_penalty' # Functions need names or Keras will throw an error | |||||
# Keras requires that inputs and outputs have the same number of samples. This is why we didn't concatenate the | |||||
# real samples and generated samples before passing them to the discriminator: If we had, it would create an | |||||
# output with 2 * BATCH_SIZE samples, while the output of the "averaged" samples for gradient penalty | |||||
# would have only BATCH_SIZE samples. | |||||
# If we don't concatenate the real and generated samples, however, we get three outputs: One of the generated | |||||
# samples, one of the real samples, and one of the averaged samples, all of size BATCH_SIZE. This works neatly! | |||||
discriminator_model = Model(inputs=[real_samples, generator_input_for_discriminator, input_seq], | |||||
outputs=[discriminator_output_from_real_samples, | |||||
discriminator_output_from_generator, | |||||
averaged_samples_out]) | |||||
loss_weights2 = [1, 1, 1] | |||||
# We use the Adam paramaters from Gulrajani et al. We use the Wasserstein loss for both the real and generated | |||||
# samples, and the gradient penalty loss for the averaged samples. | |||||
discriminator_model.compile(optimizer=SGD(clipvalue=0.01), # Adam(lr=4E-4, beta_1=0.9, beta_2=0.999, epsilon=1e-08) | |||||
loss=[wasserstein_loss, | |||||
wasserstein_loss, | |||||
partial_gp_loss], loss_weights=loss_weights2) | |||||
# set_trainable_state(discriminator, True) | |||||
# set_trainable_state(generator, True) | |||||
return generator_model, discriminator_model |
#!/usr/bin/env python | |||||
""" | |||||
""" | |||||
from __future__ import division | |||||
import logging | |||||
import sys | |||||
import time | |||||
from collections import deque | |||||
from multiprocessing import Pool | |||||
import click as ck | |||||
import numpy as np | |||||
import pandas as pd | |||||
import tensorflow as tf | |||||
from keras import backend as K | |||||
from keras.callbacks import EarlyStopping, ModelCheckpoint | |||||
from keras.layers import ( | |||||
Dense, Input, SpatialDropout1D, Conv1D, MaxPooling1D, AveragePooling1D, Multiply,GaussianNoise, | |||||
Flatten, Concatenate, Add, Maximum, Embedding, BatchNormalization, Activation, Dropout) | |||||
from keras.losses import binary_crossentropy | |||||
from keras.models import Sequential, Model, load_model | |||||
from keras.preprocessing import sequence | |||||
from scipy.spatial import distance | |||||
from sklearn.metrics import log_loss | |||||
from sklearn.metrics import roc_curve, auc, matthews_corrcoef | |||||
from keras.layers import Lambda, LeakyReLU, RepeatVector | |||||
from sklearn.metrics import precision_recall_curve | |||||
from keras.callbacks import TensorBoard | |||||
from utils import ( | |||||
get_gene_ontology, | |||||
get_go_set, | |||||
get_anchestors, | |||||
get_parents, | |||||
DataGenerator, | |||||
FUNC_DICT, | |||||
get_height) | |||||
from conditional_wgan_wrapper_exp1 import WGAN_wrapper, wasserstein_loss, generator_recunstruction_loss_new | |||||
config = tf.ConfigProto() | |||||
config.gpu_options.allow_growth = True | |||||
sess = tf.Session(config=config) | |||||
K.set_session(sess) | |||||
logging.basicConfig(format='%(levelname)s:%(message)s', level=logging.INFO) | |||||
sys.setrecursionlimit(100000) | |||||
DATA_ROOT = 'Data/data1/' | |||||
MAXLEN = 1000 | |||||
REPLEN = 256 | |||||
ind = 0 | |||||
@ck.command() | |||||
@ck.option( | |||||
'--function', | |||||
default='bp', | |||||
help='Ontology id (mf, bp, cc)') | |||||
@ck.option( | |||||
'--device', | |||||
default='gpu:0', | |||||
help='GPU or CPU device id') | |||||
@ck.option( | |||||
'--org', | |||||
default= None, | |||||
help='Organism id for filtering test set') | |||||
@ck.option('--train', default=True, is_flag=True) | |||||
def main(function, device, org, train): | |||||
global FUNCTION | |||||
FUNCTION = function | |||||
global GO_ID | |||||
GO_ID = FUNC_DICT[FUNCTION] | |||||
global go | |||||
go = get_gene_ontology('go.obo') | |||||
global ORG | |||||
ORG = org | |||||
func_df = pd.read_pickle(DATA_ROOT + FUNCTION + '.pkl') | |||||
global functions | |||||
functions = func_df['functions'].values | |||||
global embedds | |||||
embedds = load_go_embedding(functions) | |||||
global all_functions | |||||
all_functions = get_go_set(go, GO_ID) | |||||
logging.info('Functions: %s %d' % (FUNCTION, len(functions))) | |||||
if ORG is not None: | |||||
logging.info('Organism %s' % ORG) | |||||
global node_names | |||||
node_names = set() | |||||
with tf.device('/' + device): | |||||
params = { | |||||
'fc_output': 1024, | |||||
'embedding_dims': 128, | |||||
'embedding_dropout': 0.2, | |||||
'nb_conv': 2, | |||||
'nb_dense': 1, | |||||
'filter_length': 128, | |||||
'nb_filter': 32, | |||||
'pool_length': 64, | |||||
'stride': 32 | |||||
} | |||||
model(params, is_train=train) | |||||
def load_go_embedding(functions): | |||||
f_embedding = open('data/swiss/term-graph-cellular-component-100d.emb', 'r') | |||||
f_index = open('data/swiss/term-id-cellular-component.txt','r') | |||||
embeddings = f_embedding.readlines() | |||||
index = f_index.readlines() | |||||
dict1 ={} | |||||
for i in range(1, len(index)): | |||||
ind = map(str, index[i].split()) | |||||
dict1[ind[0]] = ind[2] | |||||
dict2={} | |||||
for i in range(1, len(embeddings)): | |||||
embedding = map(str, embeddings[i].split()) | |||||
dict2[str(embedding[0])] = embedding[1:] | |||||
embedds = [] | |||||
z = 0 | |||||
for i in range(len(functions)): | |||||
term = functions[i] | |||||
if term in dict1.keys(): | |||||
term_index = dict1[term] | |||||
term_embedd = dict2[str(term_index)] | |||||
else: | |||||
term_embedd = np.ones([100]) | |||||
embedds.append(term_embedd) | |||||
return np.array(embedds) | |||||
def load_data(): | |||||
df = pd.read_pickle(DATA_ROOT + 'train' + '-' + FUNCTION + '.pkl') | |||||
n = len(df) | |||||
index = df.index.values | |||||
valid_n = int(n * 0.8) | |||||
train_df = df.loc[index[:valid_n]] | |||||
valid_df = df.loc[index[valid_n:]] | |||||
test_df = pd.read_pickle(DATA_ROOT + 'test' + '-' + FUNCTION + '.pkl') | |||||
print( test_df['orgs'] ) | |||||
if ORG is not None: | |||||
logging.info('Unfiltered test size: %d' % len(test_df)) | |||||
test_df = test_df[test_df['orgs'] == ORG] | |||||
logging.info('Filtered test size: %d' % len(test_df)) | |||||
def reshape(values): | |||||
values = np.hstack(values).reshape( | |||||
len(values), len(values[0])) | |||||
return values | |||||
def normalize_minmax(values): | |||||
mn = np.min(values) | |||||
mx = np.max(values) | |||||
if mx - mn != 0.0: | |||||
return (values - mn) / (mx - mn) | |||||
return values - mn | |||||
def get_values(data_frame): | |||||
print(data_frame['labels'].values.shape) | |||||
labels = reshape(data_frame['labels'].values) | |||||
ngrams = sequence.pad_sequences( | |||||
data_frame['ngrams'].values, maxlen=MAXLEN) | |||||
ngrams = reshape(ngrams) | |||||
rep = reshape(data_frame['embeddings'].values) | |||||
data = ngrams | |||||
return data, labels | |||||
train = get_values(train_df) | |||||
valid = get_values(valid_df) | |||||
test = get_values(test_df) | |||||
return train, valid, test, train_df, valid_df, test_df | |||||
def load_data0(): | |||||
df = pd.read_pickle(DATA_ROOT + 'train' + '-' + FUNCTION + '.pkl') | |||||
n = len(df) | |||||
index = df.index.values | |||||
valid_n = int(n * 0.8) | |||||
train_df = df.loc[index[:valid_n]] | |||||
valid_df = df.loc[index[valid_n:]] | |||||
test_df = pd.read_pickle(DATA_ROOT + 'test' + '-' + FUNCTION + '.pkl') | |||||
print( test_df['orgs'] ) | |||||
if ORG is not None: | |||||
logging.info('Unfiltered test size: %d' % len(test_df)) | |||||
test_df = test_df[test_df['orgs'] == ORG] | |||||
logging.info('Filtered test size: %d' % len(test_df)) | |||||
def reshape(values): | |||||
values = np.hstack(values).reshape( | |||||
len(values), len(values[0])) | |||||
return values | |||||
def normalize_minmax(values): | |||||
mn = np.min(values) | |||||
mx = np.max(values) | |||||
if mx - mn != 0.0: | |||||
return (values - mn) / (mx - mn) | |||||
return values - mn | |||||
def get_values(data_frame, p_list): | |||||
accesion_numbers = data_frame['accessions'].values | |||||
all_labels = data_frame['labels'].values | |||||
all_ngrams = reshape(sequence.pad_sequences(data_frame['ngrams'].values, maxlen=MAXLEN) ) | |||||
print(len(all_labels)) | |||||
print(len(p_list)) | |||||
labels = [] | |||||
data = [] | |||||
for i in range(accesion_numbers.shape[0]): | |||||
if accesion_numbers[i] in p_list: | |||||
labels.append(all_labels[i]) | |||||
data.append(all_ngrams[i]) | |||||
return np.asarray(data), np.asarray(labels) | |||||
dev_F = pd.read_csv('dev-' + FUNCTION + '-input.tsv', sep='\t', header=0, index_col=0) | |||||
test_F = pd.read_csv('test-' + FUNCTION + '-input.tsv', sep='\t', header=0, index_col=0) | |||||
train_F = pd.read_csv('train-' + FUNCTION + '-input.tsv', sep='\t', header=0, index_col=0) | |||||
train_l = train_F.index.tolist() | |||||
test_l = test_F.index.tolist() | |||||
dev_l = dev_F.index.tolist() | |||||
train = get_values(train_df, train_l) | |||||
valid = get_values(valid_df, dev_l) | |||||
test = get_values(test_df, test_l) | |||||
return train, valid, test, train_df, valid_df, test_df | |||||
class TrainValTensorBoard(TensorBoard): | |||||
def __init__(self, log_dir='./t_logs', **kwargs): | |||||
# Make the original `TensorBoard` log to a subdirectory 'training' | |||||
training_log_dir = log_dir | |||||
super(TrainValTensorBoard, self).__init__(training_log_dir, **kwargs) | |||||
# Log the validation metrics to a separate subdirectory | |||||
self.val_log_dir = './v_logs' | |||||
self.dis_log_dir = './d_logs' | |||||
self.gen_log_dir = './g_logs' | |||||
def set_model(self, model): | |||||
# Setup writer for validation metrics | |||||
self.val_writer = tf.summary.FileWriter(self.val_log_dir) | |||||
self.dis_writer = tf.summary.FileWriter(self.dis_log_dir) | |||||
self.gen_writer = tf.summary.FileWriter(self.gen_log_dir) | |||||
super(TrainValTensorBoard, self).set_model(model) | |||||
def on_epoch_end(self, epoch, logs=None): | |||||
# Pop the validation logs and handle them separately with | |||||
# `self.val_writer`. Also rename the keys so that they can | |||||
# be plotted on the same figure with the training metrics | |||||
logs = logs or {} | |||||
val_logs = {k.replace('val_', 'v_'): v for k, v in logs.items() if k.startswith('val_')} | |||||
for name, value in val_logs.items(): | |||||
summary = tf.Summary() | |||||
summary_value = summary.value.add() | |||||
summary_value.simple_value = value.item() | |||||
summary_value.tag = name | |||||
self.val_writer.add_summary(summary, epoch) | |||||
self.val_writer.flush() | |||||
logs = logs or {} | |||||
dis_logs = {k.replace('discriminator_', 'd_'): v for k, v in logs.items() if k.startswith('discriminator_')} | |||||
for name, value in dis_logs.items(): | |||||
summary = tf.Summary() | |||||
summary_value = summary.value.add() | |||||
summary_value.simple_value = value.item() | |||||
summary_value.tag = name | |||||
self.dis_writer.add_summary(summary, epoch) | |||||
self.dis_writer.flush() | |||||
logs = logs or {} | |||||
gen_logs = {k.replace('generator_', 'g_'): v for k, v in logs.items() if k.startswith('generator_')} | |||||
for name, value in gen_logs.items(): | |||||
summary = tf.Summary() | |||||
summary_value = summary.value.add() | |||||
summary_value.simple_value = value.item() | |||||
summary_value.tag = name | |||||
self.gen_writer.add_summary(summary, epoch) | |||||
self.gen_writer.flush() | |||||
# Pass the remaining logs to `TensorBoard.on_epoch_end` | |||||
t_logs = {k: v for k, v in logs.items() if not k.startswith('val_')} | |||||
tr_logs = {k: v for k, v in t_logs.items() if not k.startswith('discriminator_')} | |||||
tra_logs = {k: v for k, v in tr_logs.items() if not k.startswith('generator_')} | |||||
super(TrainValTensorBoard, self).on_epoch_end(epoch, tra_logs) | |||||
def on_train_end(self, logs=None): | |||||
super(TrainValTensorBoard, self).on_train_end(logs) | |||||
self.val_writer.close() | |||||
self.gen_writer.close() | |||||
self.dis_writer.close() | |||||
def get_feature_model(params): | |||||
embedding_dims = params['embedding_dims'] | |||||
max_features = 8001 | |||||
model = Sequential() | |||||
model.add(Embedding( | |||||
max_features, | |||||
embedding_dims, | |||||
input_length=MAXLEN)) | |||||
model.add(SpatialDropout1D(0.4)) | |||||
model.add(Conv1D( | |||||
padding="valid", | |||||
strides=1, | |||||
filters=params['nb_filter'], | |||||
kernel_size=params['filter_length'])) | |||||
model.add(LeakyReLU()) | |||||
#model.add(BatchNormalization()) | |||||
model.add(Conv1D( | |||||
padding="valid", | |||||
strides=1, | |||||
filters=params['nb_filter'], | |||||
kernel_size=params['filter_length'])) | |||||
model.add(LeakyReLU()) | |||||
# model.add(BatchNormalization()) problem in loading the best model | |||||
model.add(AveragePooling1D(strides=params['stride'], pool_size=params['pool_length'])) | |||||
model.add(Flatten()) | |||||
return model | |||||
#def get_node_name(go_id, unique=False): | |||||
# name = go_id.split(':')[1] | |||||
# if not unique: | |||||
# return name | |||||
# if name not in node_names: | |||||
# node_names.add(name) | |||||
# return name | |||||
# i = 1 | |||||
# while (name + '_' + str(i)) in node_names: | |||||
# i += 1 | |||||
# name = name + '_' + str(i) | |||||
# node_names.add(name) | |||||
# return name | |||||
#def get_layers(inputs): | |||||
# q = deque() | |||||
# layers = {} | |||||
# name = get_node_name(GO_ID) | |||||
# layers[GO_ID] = {'net': inputs} | |||||
# for node_id in go[GO_ID]['children']: | |||||
# if node_id in func_set: | |||||
# q.append((node_id, inputs)) | |||||
# while len(q) > 0: | |||||
# node_id, net = q.popleft() | |||||
# name = get_node_name(node_id) | |||||
# net, output = get_function_node(name, inputs) | |||||
# if node_id not in layers: | |||||
# layers[node_id] = {'net': net, 'output': output} | |||||
# for n_id in go[node_id]['children']: | |||||
# if n_id in func_set and n_id not in layers: | |||||
# ok = True | |||||
# for p_id in get_parents(go, n_id): | |||||
# if p_id in func_set and p_id not in layers: | |||||
# ok = False | |||||
# if ok: | |||||
# q.append((n_id, net)) | |||||
# for node_id in functions: | |||||
# childs = set(go[node_id]['children']).intersection(func_set) | |||||
# if len(childs) > 0: | |||||
# outputs = [layers[node_id]['output']] | |||||
# for ch_id in childs: | |||||
# outputs.append(layers[ch_id]['output']) | |||||
# name = get_node_name(node_id) + '_max' | |||||
# layers[node_id]['output'] = Maximum(name=name)(outputs) | |||||
# return layers | |||||
#def get_function_node(name, inputs): | |||||
# output_name = name + '_out' | |||||
# output = Dense(1, name=output_name, activation='sigmoid')(inputs) | |||||
# return output, output | |||||
def get_generator(params, n_classes): | |||||
inputs = Input(shape=(MAXLEN,), dtype='int32', name='input1') | |||||
feature_model = get_feature_model(params)(inputs) | |||||
net = Dense(200)(feature_model) #bp(dis1 g1) 400 - cc 200 - mf 200 | |||||
net = BatchNormalization()(net) | |||||
net = LeakyReLU()(net) | |||||
#To impose DAG hierarchy directly to the model (inspired by DeepGO) | |||||
#layers = get_layers(net) | |||||
#output_models = [] | |||||
#for i in range(len(functions)): | |||||
# output_models.append(layers[functions[i]]['output']) | |||||
#net = Concatenate(axis=1)(output_models) | |||||
output = Dense(n_classes, activation='tanh')(net) #'sigmoid' | |||||
model = Model(inputs=inputs, outputs=output) | |||||
return model | |||||
def get_discriminator(params, n_classes, dropout_rate=0.5): | |||||
inputs = Input(shape=(n_classes, )) | |||||
#n_inputs = GaussianNoise(0.1)(inputs) | |||||
#x = Conv1D(filters=8, kernel_size=128, padding='valid', strides=1)(n_inputs) | |||||
#x = BatchNormalization()(x) | |||||
#x = LeakyReLU()(x) | |||||
#x = Conv1D(filters=8, kernel_size=128, padding='valid', strides=1)(x) | |||||
#x = BatchNormalization()(x) | |||||
#x = LeakyReLU()(x) | |||||
#x = AveragePooling1D(strides=params['stride'], pool_size=params['pool_length'])(x) | |||||
#x = Flatten()(x) | |||||
#x = Lambda(lambda y: K.squeeze(y, 2))(x) | |||||
inputs2 = Input(shape =(MAXLEN,), dtype ='int32', name='d_input2') | |||||
x2 = Embedding(8001,128, input_length=MAXLEN)(inputs2) | |||||
x2 = SpatialDropout1D(0.4)(x2) | |||||
x2 = Conv1D(filters=8, kernel_size=128, padding='valid', strides=1)(x2) | |||||
x2 = BatchNormalization()(x2) | |||||
x2 = LeakyReLU()(x2) | |||||
#x2 = Conv1D(filters=1, kernel_size=1, padding='valid', strides=1)(x2) | |||||
#x2 = BatchNormalization()(x2) | |||||
#x2 = LeakyReLU()(x2) | |||||
#x2 = AveragePooling1D(strides=params['stride'], pool_size=params['pool_length'])(x2) | |||||
x2 = Flatten()(x2) | |||||
size = 100 | |||||
x2 = Dropout(dropout_rate)(x2) | |||||
x2 = Dense(size)(x2) | |||||
x2 = BatchNormalization()(x2) | |||||
x2 = LeakyReLU()(x2) | |||||
size = 100 | |||||
x = Dropout(dropout_rate)(inputs) | |||||
x = Dense(size)(x) | |||||
x = BatchNormalization()(x) | |||||
x = LeakyReLU()(x) | |||||
x = Concatenate(axis=1, name='merged2')([x, x2]) | |||||
layer_sizes = [30, 30, 30, 30, 30, 30] | |||||
for size in layer_sizes: | |||||
x = Dropout(dropout_rate)(x) | |||||
x = Dense(size)(x) | |||||
x = BatchNormalization()(x) | |||||
x = LeakyReLU()(x) | |||||
outputs = Dense(1)(x) | |||||
model = Model(inputs = [inputs, inputs2], outputs=[outputs], name='Discriminator') | |||||
return model | |||||
def rescale_labels(labels): | |||||
rescaled_labels = 2*(labels - 0.5) | |||||
return rescaled_labels | |||||
def rescale_back_labels(labels): | |||||
rescaled_back_labels =(labels/2)+0.5 | |||||
return rescaled_back_labels | |||||
def get_model(params,nb_classes, batch_size, GRADIENT_PENALTY_WEIGHT=10): | |||||
generator = get_generator(params, nb_classes) | |||||
discriminator = get_discriminator(params, nb_classes) | |||||
generator_model, discriminator_model = \ | |||||
WGAN_wrapper(generator=generator, | |||||
discriminator=discriminator, | |||||
generator_input_shape=(MAXLEN,), | |||||
discriminator_input_shape=(nb_classes,), | |||||
discriminator_input_shape2 = (MAXLEN, ), | |||||
batch_size=batch_size, | |||||
gradient_penalty_weight=GRADIENT_PENALTY_WEIGHT, | |||||
embeddings=embedds) | |||||
logging.info('Compilation finished') | |||||
return generator_model, discriminator_model | |||||
def train_wgan(generator_model, discriminator_model, batch_size, epochs, | |||||
x_train, y_train, x_val, y_val, x_test, y_test, generator_model_path, discriminator_model_path, | |||||
TRAINING_RATIO=10, N_WARM_UP=20): | |||||
BATCH_SIZE = batch_size | |||||
N_EPOCH = epochs | |||||
positive_y = np.ones((batch_size, 1), dtype=np.float32) | |||||
zero_y = positive_y * 0 | |||||
negative_y = -positive_y | |||||
positive_full_y = np.ones((BATCH_SIZE * TRAINING_RATIO, 1), dtype=np.float32) | |||||
dummy_y = np.zeros((BATCH_SIZE, 1), dtype=np.float32) | |||||
positive_full_enable_train = np.ones((len(x_train), 1), dtype=np.float32) | |||||
positive_full_enable_val = np.ones((len(x_val), 1), dtype=np.float32) | |||||
positive_full_enable_test = np.ones((len(x_test), 1), dtype=np.float32) | |||||
best_validation_loss = None | |||||
callback = TrainValTensorBoard(write_graph=False) #TensorBoard(log_path) | |||||
callback.set_model(generator_model) | |||||
for epoch in range(N_EPOCH): | |||||
# np.random.shuffle(X_train) | |||||
print("Epoch: ", epoch) | |||||
print("Number of batches: ", int(y_train.shape[0] // BATCH_SIZE)) | |||||
discriminator_loss = [] | |||||
generator_loss = [] | |||||
minibatches_size = BATCH_SIZE * TRAINING_RATIO | |||||
shuffled_indexes = np.random.permutation(x_train.shape[0]) | |||||
shuffled_indexes_2 = np.random.permutation(x_train.shape[0]) | |||||
for i in range(int(y_train.shape[0] // (BATCH_SIZE * TRAINING_RATIO))): | |||||
batch_indexes = shuffled_indexes[i * minibatches_size:(i + 1) * minibatches_size] | |||||
batch_indexes_2 = shuffled_indexes_2[i * minibatches_size:(i + 1) * minibatches_size] | |||||
x = x_train[batch_indexes] | |||||
y = y_train[batch_indexes] | |||||
y_2 = y_train[batch_indexes_2] | |||||
x_2 = x_train[batch_indexes_2] | |||||
if epoch < N_WARM_UP: | |||||
for j in range(TRAINING_RATIO): | |||||
x_batch = x[j * BATCH_SIZE:(j + 1) * BATCH_SIZE] | |||||
y_batch = y[j * BATCH_SIZE:(j + 1) * BATCH_SIZE] | |||||
generator_loss.append(generator_model.train_on_batch([x_batch, positive_y], [y_batch, zero_y])) | |||||
discriminator_loss.append(0) | |||||
else: | |||||
for j in range(TRAINING_RATIO): | |||||
x_batch = x[j * BATCH_SIZE:(j + 1) * BATCH_SIZE] | |||||
y_batch = y[j * BATCH_SIZE:(j + 1) * BATCH_SIZE] | |||||
y_batch_2 = y_2[j * BATCH_SIZE:(j + 1) * BATCH_SIZE] | |||||
x_batch_2 = x_2[j * BATCH_SIZE:(j + 1) * BATCH_SIZE] | |||||
# noise = np.random.rand(BATCH_SIZE, 100).astype(np.float32) | |||||
noise = x_batch | |||||
discriminator_loss.append(discriminator_model.train_on_batch( | |||||
[y_batch_2, noise, x_batch_2], | |||||
[positive_y, negative_y, dummy_y])) | |||||
generator_loss.append(generator_model.train_on_batch([x, positive_full_y], [y, positive_full_y])) | |||||
predicted_y_train = generator_model.predict([x_train, positive_full_enable_train], batch_size=BATCH_SIZE)[0] | |||||
predicted_y_val = generator_model.predict([x_val, positive_full_enable_val], batch_size=BATCH_SIZE)[0] | |||||
train_loss = log_loss(rescale_back_labels(y_train), rescale_back_labels(predicted_y_train)) | |||||
val_loss = log_loss(y_val, rescale_back_labels(predicted_y_val)) | |||||
callback.on_epoch_end(epoch, | |||||
logs={'discriminator_loss': (np.sum(np.asarray(discriminator_loss)) if discriminator_loss else -1), | |||||
'generator_loss': (np.sum(np.asarray(generator_loss)) if generator_loss else -1),#train_loss, | |||||
'train_bce_loss': train_loss, | |||||
'val_bce_loss': val_loss}) | |||||
print("train bce loss: {:.4f}, validation bce loss: {:.4f}, generator loss: {:.4f}, discriminator loss: {:.4f}".format( | |||||
train_loss, val_loss, | |||||
(np.sum(np.asarray(generator_loss)) if generator_loss else -1) / x_train.shape[0], | |||||
(np.sum(np.asarray(discriminator_loss)) if discriminator_loss else -1) / x_train.shape[0])) | |||||
if best_validation_loss is None or best_validation_loss > val_loss: | |||||
print('\nEpoch %05d: improved from %0.5f,' | |||||
' saving model to %s and %s' | |||||
% (epoch + 1, val_loss, generator_model_path, discriminator_model_path)) | |||||
best_validation_loss = val_loss | |||||
generator_model.save(generator_model_path, overwrite=True) | |||||
discriminator_model.save(discriminator_model_path, overwrite=True) | |||||
def model(params, batch_size=64, nb_epoch=10000, is_train=True): | |||||
nb_classes = len(functions) | |||||
logging.info("Loading Data") | |||||
train, val, test, train_df, valid_df, test_df = load_data() | |||||
train_data, train_labels = train | |||||
val_data, val_labels = val | |||||
test_data, test_labels = test | |||||
train_labels = rescale_labels(train_labels) | |||||
logging.info("Training data size: %d" % len(train_data)) | |||||
logging.info("Validation data size: %d" % len(val_data)) | |||||
logging.info("Test data size: %d" % len(test_data)) | |||||
generator_model_path = DATA_ROOT + 'models/new_model_seq_' + FUNCTION + '.h5' | |||||
discriminator_model_path = DATA_ROOT + 'models/new_model_disc_seq_' + FUNCTION + '.h5' | |||||
logging.info('Starting training the model') | |||||
train_generator = DataGenerator(batch_size, nb_classes) | |||||
train_generator.fit(train_data, train_labels) | |||||
valid_generator = DataGenerator(batch_size, nb_classes) | |||||
valid_generator.fit(val_data, val_labels) | |||||
test_generator = DataGenerator(batch_size, nb_classes) | |||||
test_generator.fit(test_data, test_labels) | |||||
if is_train: | |||||
generator_model, discriminator_model = get_model(params, nb_classes, batch_size) | |||||
#Loading a pretrained model | |||||
#generator_model.load_weights(DATA_ROOT + 'models/trained_bce/new_model_seq_' + FUNCTION + '.h5') | |||||
train_wgan(generator_model, discriminator_model, batch_size=batch_size, epochs=nb_epoch, | |||||
x_train=train_data, y_train=train_labels , x_val=val_data, y_val=val_labels, x_test = test_data, y_test = test_labels, | |||||
generator_model_path=generator_model_path, | |||||
discriminator_model_path=discriminator_model_path) | |||||
logging.info('Loading best model') | |||||
model = load_model(generator_model_path, | |||||
custom_objects={'generator_recunstruction_loss_new': generator_recunstruction_loss_new, | |||||
'wasserstein_loss': wasserstein_loss}) | |||||
logging.info('Predicting') | |||||
start_time = time.time() | |||||
preds = model.predict_generator(test_generator, steps=len(test_data) / batch_size)[0] | |||||
end_time = time.time() | |||||
logging.info('%f prediction time for %f protein sequences' % (start_time-end_time, len(test_data))) | |||||
preds = rescale_back_labels(preds) | |||||
#preds = propagate_score(preds, functions) | |||||
logging.info('Computing performance') | |||||
f, p, r, t, preds_max = compute_performance(preds, test_labels) | |||||
micro_roc_auc = compute_roc(preds, test_labels) | |||||
macro_roc_auc = compute_roc_macro(preds, test_labels) | |||||
mcc = compute_mcc(preds_max, test_labels) | |||||
aupr, _ = compute_aupr(preds, test_labels) | |||||
tpr_score, total = compute_tpr_score(preds_max, functions) | |||||
m_pr_max, m_rc_max, m_f1_max, M_pr_max, M_rc_max, M_f1_max = micro_macro_function_centric_f1(preds.T, test_labels.T) | |||||
function_centric_performance(functions, preds.T, test_labels.T, rescale_back_labels(train_labels).T, t) | |||||
logging.info('Protein centric macro Th, PR, RC, F1: \t %f %f %f %f' % (t, p, r, f)) | |||||
logging.info('Micro ROC AUC: \t %f ' % (micro_roc_auc, )) | |||||
logging.info('Macro ROC AUC: \t %f ' % (macro_roc_auc,)) | |||||
logging.info('MCC: \t %f ' % (mcc, )) | |||||
logging.info('AUPR: \t %f ' % (aupr, )) | |||||
logging.info('TPR_Score from total: \t %f \t %f ' % (tpr_score,total)) | |||||
logging.info('Function centric macro PR, RC, F1: \t %f %f %f' % (M_pr_max, M_rc_max, M_f1_max) ) | |||||
logging.info('Function centric micro PR, RC, F1: \t %f %f %f' % (m_pr_max, m_rc_max, m_f1_max) ) | |||||
def function_centric_performance(functions, preds, labels, labels_train, threshold): | |||||
results = [] | |||||
preds = np.round(preds, 2) | |||||
for i in range(preds.shape[0]): | |||||
predictions = (preds[i, :] > threshold).astype(np.int32) | |||||
tp = np.sum(predictions * labels[i, :]) | |||||
fp = np.sum(predictions) - tp | |||||
fn = np.sum(labels[i, :]) - tp | |||||
if tp > 0: | |||||
precision = tp / (1.0 * (tp + fp)) | |||||
recall = tp / (1.0 * (tp + fn)) | |||||
f = 2 * precision * recall / (precision + recall) | |||||
else: | |||||
if fp == 0 and fn == 0: | |||||
precision = 1 | |||||
recall = 1 | |||||
f = 1 | |||||
else: | |||||
precision = 0 | |||||
recall = 0 | |||||
f = 0 | |||||
f_max = f | |||||
p_max = precision | |||||
r_max = recall | |||||
num_prots_train = np.sum(labels_train[i, :]) | |||||
height = get_height(go, functions[i]) | |||||
results.append([functions[i], num_prots_train, height, f_max, p_max, r_max]) | |||||
results = pd.DataFrame(results) | |||||
results.to_csv('Con_GodGanSeq_results_' + FUNCTION + '.txt', sep='\t', index=False) | |||||
def micro_macro_function_centric_f1(preds, labels): | |||||
predictions = np.round(preds) | |||||
m_tp = 0 | |||||
m_fp = 0 | |||||
m_fn = 0 | |||||
M_pr = 0 | |||||
M_rc = 0 | |||||
for i in range(preds.shape[0]): | |||||
tp = np.sum(predictions[i, :] * labels[i, :]) | |||||
fp = np.sum(predictions[i, :]) - tp | |||||
fn = np.sum(labels[i, :]) - tp | |||||
m_tp += tp | |||||
m_fp += fp | |||||
m_fn += fn | |||||
if tp > 0: | |||||
pr = 1.0 * tp / (1.0 * (tp + fp)) | |||||
rc = 1.0 * tp / (1.0 * (tp + fn)) | |||||
else: | |||||
if fp == 0 and fn == 0: | |||||
pr = 1 | |||||
rc = 1 | |||||
else: | |||||
pr = 0 | |||||
rc = 0 | |||||
M_pr += pr | |||||
M_rc += rc | |||||
if m_tp > 0: | |||||
m_pr = 1.0 * m_tp / (1.0 * (m_tp + m_fp)) | |||||
m_rc = 1.0 * m_tp / (1.0 * (m_tp + m_fn)) | |||||
m_f1 = 2.0 * m_pr * m_rc / (m_pr + m_rc) | |||||
else: | |||||
if m_fp == 0 and m_fn == 0: | |||||
m_pr = 1 | |||||
m_rc = 1 | |||||
m_f1 = 1 | |||||
else: | |||||
m_pr = 0 | |||||
m_rc = 0 | |||||
m_f1 = 0 | |||||
M_pr /= preds.shape[0] | |||||
M_rc /= preds.shape[0] | |||||
if M_pr == 0 and M_rc == 0: | |||||
M_f1 = 0 | |||||
else: | |||||
M_f1 = 2.0 * M_pr * M_rc / (M_pr + M_rc) | |||||
return m_pr, m_rc, m_f1, M_pr, M_rc, M_f1 | |||||
def compute_roc(preds, labels): | |||||
# Compute ROC curve and ROC area for each class | |||||
fpr, tpr, _ = roc_curve(labels.flatten(), preds.flatten()) | |||||
roc_auc = auc(fpr, tpr) | |||||
return roc_auc | |||||
def compute_roc_macro(yhat_raw, y): | |||||
if yhat_raw.shape[0] <= 1: | |||||
return | |||||
fpr = {} | |||||
tpr = {} | |||||
roc_auc = {} | |||||
# get AUC for each label individually | |||||
relevant_labels = [] | |||||
auc_labels = {} | |||||
for i in range(y.shape[1]): | |||||
# only if there are true positives for this label | |||||
if y[:, i].sum() > 0: | |||||
fpr[i], tpr[i], _ = roc_curve(y[:, i], yhat_raw[:, i]) | |||||
if len(fpr[i]) > 1 and len(tpr[i]) > 1: | |||||
auc_score = auc(fpr[i], tpr[i]) | |||||
if not np.isnan(auc_score): | |||||
auc_labels["auc_%d" % i] = auc_score | |||||
relevant_labels.append(i) | |||||
# macro-AUC: just average the auc scores | |||||
aucs = [] | |||||
for i in relevant_labels: | |||||
aucs.append(auc_labels['auc_%d' % i]) | |||||
roc_auc_macro = np.mean(aucs) | |||||
return roc_auc_macro | |||||
def compute_aupr(preds, labels): | |||||
# Compute ROC curve and ROC area for each class | |||||
pr, rc, threshold =precision_recall_curve(labels.flatten(), preds.flatten()) | |||||
pr_auc = auc(rc, pr) | |||||
M_pr_auc = 0 | |||||
return pr_auc, M_pr_auc | |||||
def compute_mcc(preds, labels): | |||||
# Compute ROC curve and ROC area for each class | |||||
mcc = matthews_corrcoef(labels.flatten(), preds.flatten()) | |||||
return mcc | |||||
def compute_performance(preds, labels): | |||||
predicts = np.round(preds, 2) | |||||
f_max = 0 | |||||
p_max = 0 | |||||
r_max = 0 | |||||
t_max = 0 | |||||
for t in range(1, 100): | |||||
threshold = t / 100.0 | |||||
predictions = (predicts > threshold).astype(np.int32) | |||||
total = 0 | |||||
f = 0.0 | |||||
p = 0.0 | |||||
r = 0.0 | |||||
p_total = 0 | |||||
for i in range(labels.shape[0]): | |||||
tp = np.sum(predictions[i, :] * labels[i, :]) | |||||
fp = np.sum(predictions[i, :]) - tp | |||||
fn = np.sum(labels[i, :]) - tp | |||||
if tp == 0 and fp == 0 and fn == 0: | |||||
continue | |||||
total += 1 | |||||
if tp != 0: | |||||
p_total += 1 | |||||
precision = tp / (1.0 * (tp + fp)) | |||||
recall = tp / (1.0 * (tp + fn)) | |||||
p += precision | |||||
r += recall | |||||
if p_total == 0: | |||||
continue | |||||
r /= total | |||||
p /= p_total | |||||
if p + r > 0: | |||||
f = 2 * p * r / (p + r) | |||||
if f_max < f: | |||||
f_max = f | |||||
p_max = p | |||||
r_max = r | |||||
t_max = threshold | |||||
predictions_max = predictions | |||||
return f_max, p_max, r_max, t_max, predictions_max | |||||
def get_anchestors(go, go_id): | |||||
go_set = set() | |||||
q = deque() | |||||
q.append(go_id) | |||||
while(len(q) > 0): | |||||
g_id = q.popleft() | |||||
go_set.add(g_id) | |||||
for parent_id in go[g_id]['is_a']: | |||||
if parent_id in go: | |||||
q.append(parent_id) | |||||
return go_set | |||||
def compute_tpr_score(preds_max, functions): | |||||
my_dict = {} | |||||
for i in range(len(functions)): | |||||
my_dict[functions[i]] = i | |||||
total =0 | |||||
anc = np.zeros([len(functions), len(functions)]) | |||||
for i in range(len(functions)): | |||||
anchestors = list(get_anchestors(go, functions[i])) | |||||
for j in range(len(anchestors)): | |||||
if anchestors[j] in my_dict.keys(): | |||||
anc[i, my_dict[anchestors[j]]]=1 | |||||
total +=1 | |||||
tpr_score = 0 | |||||
for i in range(preds_max.shape[0]): | |||||
for j in range(preds_max.shape[1]): | |||||
if preds_max[i, j] == 1: | |||||
for k in range(anc.shape[1]): | |||||
if anc[j, k]==1: | |||||
if preds_max[i,k]!=1: | |||||
tpr_score = tpr_score +1 | |||||
return tpr_score/preds_max.shape[0], total | |||||
def propagate_score(preds, functions): | |||||
my_dict = {} | |||||
for i in range(len(functions)): | |||||
my_dict[functions[i]] = i | |||||
anc = np.zeros([len(functions), len(functions)]) | |||||
for i in range(len(functions)): | |||||
anchestors = list(get_anchestors(go, functions[i])) | |||||
for j in range(len(anchestors)): | |||||
if anchestors[j] in my_dict.keys(): | |||||
anc[i, my_dict[anchestors[j]]] = 1 | |||||
new_preds = np.array(preds) | |||||
for i in range(new_preds.shape[1]): | |||||
for k in range(anc.shape[1]): | |||||
if anc[i, k] == 1: | |||||
new_preds[new_preds[:, i] > new_preds[:, k], k] = new_preds[new_preds[:, i] > new_preds[:, k], i] | |||||
return new_preds | |||||
if __name__ == '__main__': | |||||
main() |
#!/usr/bin/env python | |||||
""" | |||||
""" | |||||
from __future__ import division | |||||
import logging | |||||
import sys | |||||
import time | |||||
import click as ck | |||||
import numpy as np | |||||
import pandas as pd | |||||
import tensorflow as tf | |||||
from keras import backend as K | |||||
from keras.layers import ( | |||||
Dense, Input, SpatialDropout1D, Conv1D, MaxPooling1D,GaussianNoise, | |||||
Flatten, Concatenate, Add, Maximum, Embedding, BatchNormalization, Activation, Dropout) | |||||
from keras.models import Sequential, Model, load_model | |||||
from sklearn.metrics import log_loss | |||||
from sklearn.metrics import roc_curve, auc, matthews_corrcoef, mean_squared_error | |||||
from keras.layers import Lambda, LeakyReLU | |||||
from sklearn.metrics import precision_recall_curve | |||||
from keras.callbacks import TensorBoard | |||||
from skimage import measure | |||||
from utils import DataGenerator | |||||
from conditional_wgan_wrapper_exp2 import WGAN_wrapper, wasserstein_loss, generator_recunstruction_loss_new | |||||
config = tf.ConfigProto() | |||||
config.gpu_options.allow_growth = True | |||||
sess = tf.Session(config=config) | |||||
K.set_session(sess) | |||||
logging.basicConfig(format='%(levelname)s:%(message)s', level=logging.INFO) | |||||
sys.setrecursionlimit(100000) | |||||
DATA_ROOT = 'Data/data2/' | |||||
MAXLEN = 258 | |||||
@ck.command() | |||||
@ck.option( | |||||
'--function', | |||||
default='cc', | |||||
help='Ontology id (mf, bp, cc)') | |||||
@ck.option( | |||||
'--device', | |||||
default='gpu:0', | |||||
help='GPU or CPU device id') | |||||
@ck.option('--train',default =True, is_flag=True) | |||||
def main(function, device, train): | |||||
global FUNCTION | |||||
FUNCTION = function | |||||
with tf.device('/' + device): | |||||
params = { | |||||
'fc_output': 1024, | |||||
'embedding_dims': 128, | |||||
'embedding_dropout': 0.2, | |||||
'nb_conv': 1, | |||||
'nb_dense': 1, | |||||
'filter_length': 128, | |||||
'nb_filter': 32, | |||||
'pool_length': 64, | |||||
'stride': 32 | |||||
} | |||||
model(params, is_train=train) | |||||
def load_data2(): | |||||
all_data_x_fn = 'data2/all_data_X.csv' | |||||
all_data_x = pd.read_csv(all_data_x_fn, sep='\t', header=0, index_col=0) | |||||
all_proteins_train = [p.replace('"', '') for p in all_data_x.index] | |||||
all_data_x.index = all_proteins_train | |||||
all_data_y_fn = 'data2/all_data_Y.csv' | |||||
all_data_y = pd.read_csv(all_data_y_fn, sep='\t', header=0, index_col=0) | |||||
branch = pd.read_csv('data2/'+FUNCTION +'_branches.txt', sep='\t', header=0, index_col=0) | |||||
all_x = all_data_x.values | |||||
branches = [p for p in branch.index.tolist() if p in all_data_y.columns.tolist()] | |||||
branches = list(dict.fromkeys(branches)) | |||||
global mt_funcs | |||||
mt_funcs = branches | |||||
t= pd.DataFrame(all_data_y, columns=branches) | |||||
all_y = t.values | |||||
number_of_test = int(np.ceil(0.4 * len(all_x))) | |||||
np.random.seed(0) | |||||
index = np.random.rand(1,number_of_test) | |||||
index_test = [int(p) for p in np.ceil(index*(len(all_x)-1))[0]] | |||||
index_train = [p for p in range(len(all_x)) if p not in index_test] | |||||
train_data = all_x[index_train, : ] | |||||
test_x = all_x[index_test, : ] | |||||
train_labels = all_y[index_train, : ] | |||||
test_y = all_y[index_test, :] | |||||
number_of_vals = int(np.ceil(0.5 * len(test_x))) | |||||
np.random.seed(1) | |||||
index = np.random.rand(1, number_of_vals) | |||||
index_vals = [int(p) for p in np.ceil(index * (len(test_x) - 1))[0]] | |||||
index_test = [p for p in range(len(test_x)) if p not in index_vals] | |||||
val_data = test_x[index_vals, :] | |||||
test_data = test_x[index_test, :] | |||||
val_labels = test_y[index_vals, :] | |||||
test_labels = test_y[index_test, :] | |||||
print(train_labels.shape) | |||||
return train_data, train_labels, test_data, test_labels, val_data, val_labels | |||||
def get_feature_model(params): | |||||
embedding_dims = params['embedding_dims'] | |||||
max_features = 8001 | |||||
model = Sequential() | |||||
model.add(Embedding( | |||||
max_features, | |||||
embedding_dims, | |||||
input_length=MAXLEN)) | |||||
model.add(SpatialDropout1D(0.4)) | |||||
for i in range(params['nb_conv']): | |||||
model.add(Conv1D( | |||||
padding="valid", | |||||
strides=1, | |||||
filters=params['nb_filter'], | |||||
kernel_size=params['filter_length'])) | |||||
model.add(LeakyReLU()) | |||||
model.add(MaxPooling1D(strides=params['stride'], pool_size=params['pool_length'])) | |||||
model.add(Flatten()) | |||||
return model | |||||
def get_generator(params, n_classes): | |||||
inputs = Input(shape=(MAXLEN,), dtype='float32', name='input1') | |||||
net0 = Dense(200)(inputs) | |||||
#net0 = BatchNormalization()(net0) | |||||
net0 = LeakyReLU()(net0) | |||||
net0 = Dense(200)(net0) | |||||
#net0 = BatchNormalization()(net0) | |||||
net0 = LeakyReLU()(net0) | |||||
#net0 = Dense(200, activation='relu')(inputs) | |||||
net0 = Dense(200)(net0) | |||||
#net0 = BatchNormalization()(net0) | |||||
net = LeakyReLU()(net0) | |||||
output = Dense(n_classes, activation='tanh')(net) | |||||
model = Model(inputs=inputs, outputs=output) | |||||
return model | |||||
def get_discriminator(params, n_classes, dropout_rate=0.5): | |||||
inputs = Input(shape=(n_classes, )) | |||||
n_inputs = GaussianNoise(0.1)(inputs) | |||||
inputs2 = Input(shape =(MAXLEN,), dtype ='int32', name='d_input2') | |||||
x2 = Embedding(8001, 128, input_length=MAXLEN)(inputs2) | |||||
x2 = Conv1D(filters =1 , kernel_size= 1, padding = 'valid', strides=1)(x2) | |||||
x2 = LeakyReLU()(x2) | |||||
x2 = Lambda(lambda x: K.squeeze(x, 2))(x2) | |||||
#for i in range(params['nb_conv']): | |||||
# x2 = Conv1D ( activation="relu", padding="valid", strides=1, filters=params['nb_filter'],kernel_size=params['filter_length'])(x2) | |||||
#x2 =MaxPooling1D(strides=params['stride'], pool_size=params['pool_length'])(x2) | |||||
#x2 = Flatten()(x2) | |||||
size = 40 | |||||
x = n_inputs | |||||
x = Dropout(dropout_rate)(x) | |||||
x = Dense(size)(x) | |||||
x = BatchNormalization()(x) | |||||
x = LeakyReLU()(x) | |||||
size = 40 | |||||
x2 = Dropout(dropout_rate)(x2) | |||||
x2 = Dense(size)(x2) | |||||
x2 = BatchNormalization()(x2) | |||||
x2 = LeakyReLU()(x2) | |||||
x = Concatenate(axis =1 , name = 'merged2')([x, x2]) | |||||
layer_sizes = [30, 30, 30, 30, 30, 30] | |||||
for size in layer_sizes: | |||||
x = Dropout(dropout_rate)(x) | |||||
x = Dense(size)(x) | |||||
x = BatchNormalization()(x) | |||||
x = LeakyReLU()(x) | |||||
outputs = Dense(1)(x) | |||||
model = Model(inputs = [inputs ,inputs2], outputs=outputs, name='Discriminator') | |||||
return model | |||||
class TrainValTensorBoard(TensorBoard): | |||||
def __init__(self, log_dir='./t_logs', **kwargs): | |||||
# Make the original `TensorBoard` log to a subdirectory 'training' | |||||
training_log_dir = log_dir | |||||
super(TrainValTensorBoard, self).__init__(training_log_dir, **kwargs) | |||||
# Log the validation metrics to a separate subdirectory | |||||
self.val_log_dir = './v_logs' | |||||
self.dis_log_dir = './d_logs' | |||||
self.gen_log_dir = './g_logs' | |||||
def set_model(self, model): | |||||
# Setup writer for validation metrics | |||||
self.val_writer = tf.summary.FileWriter(self.val_log_dir) | |||||
self.dis_writer = tf.summary.FileWriter(self.dis_log_dir) | |||||
self.gen_writer = tf.summary.FileWriter(self.gen_log_dir) | |||||
super(TrainValTensorBoard, self).set_model(model) | |||||
def on_epoch_end(self, epoch, logs=None): | |||||
# Pop the validation logs and handle them separately with | |||||
# `self.val_writer`. Also rename the keys so that they can | |||||
# be plotted on the same figure with the training metrics | |||||
logs = logs or {} | |||||
val_logs = {k.replace('val_', 'v_'): v for k, v in logs.items() if k.startswith('val_')} | |||||
for name, value in val_logs.items(): | |||||
summary = tf.Summary() | |||||
summary_value = summary.value.add() | |||||
summary_value.simple_value = value.item() | |||||
summary_value.tag = name | |||||
self.val_writer.add_summary(summary, epoch) | |||||
self.val_writer.flush() | |||||
logs = logs or {} | |||||
dis_logs = {k.replace('discriminator_', 'd_'): v for k, v in logs.items() if k.startswith('discriminator_')} | |||||
for name, value in dis_logs.items(): | |||||
summary = tf.Summary() | |||||
summary_value = summary.value.add() | |||||
summary_value.simple_value = value.item() | |||||
summary_value.tag = name | |||||
self.dis_writer.add_summary(summary, epoch) | |||||
self.dis_writer.flush() | |||||
logs = logs or {} | |||||
gen_logs = {k.replace('generator_', 'g_'): v for k, v in logs.items() if k.startswith('generator_')} | |||||
for name, value in gen_logs.items(): | |||||
summary = tf.Summary() | |||||
summary_value = summary.value.add() | |||||
summary_value.simple_value = value.item() | |||||
summary_value.tag = name | |||||
self.gen_writer.add_summary(summary, epoch) | |||||
self.gen_writer.flush() | |||||
# Pass the remaining logs to `TensorBoard.on_epoch_end` | |||||
t_logs = {k: v for k, v in logs.items() if not k.startswith('val_')} | |||||
tr_logs = {k: v for k, v in t_logs.items() if not k.startswith('discriminator_')} | |||||
tra_logs = {k: v for k, v in tr_logs.items() if not k.startswith('generator_')} | |||||
super(TrainValTensorBoard, self).on_epoch_end(epoch, tra_logs) | |||||
def on_train_end(self, logs=None): | |||||
super(TrainValTensorBoard, self).on_train_end(logs) | |||||
self.val_writer.close() | |||||
self.gen_writer.close() | |||||
self.dis_writer.close() | |||||
def rescale_labels(labels): | |||||
rescaled_labels = 2*(labels - 0.5) | |||||
return rescaled_labels | |||||
def rescale_back_labels(labels): | |||||
rescaled_back_labels =(labels/2)+0.5 | |||||
return rescaled_back_labels | |||||
def get_model(params, nb_classes, batch_size, GRADIENT_PENALTY_WEIGHT=10): | |||||
generator = get_generator(params, nb_classes) | |||||
discriminator = get_discriminator(params, nb_classes) | |||||
generator_model, discriminator_model = \ | |||||
WGAN_wrapper(generator=generator, | |||||
discriminator=discriminator, | |||||
generator_input_shape=(MAXLEN,), | |||||
discriminator_input_shape=(nb_classes,), | |||||
discriminator_input_shape2 = (MAXLEN, ), | |||||
batch_size=batch_size, | |||||
gradient_penalty_weight=GRADIENT_PENALTY_WEIGHT) | |||||
logging.info('Compilation finished') | |||||
return generator_model, discriminator_model | |||||
def train_wgan(generator_model, discriminator_model, batch_size, epochs, | |||||
x_train, y_train, x_val, y_val, generator_model_path, discriminator_model_path, | |||||
TRAINING_RATIO=10, N_WARM_UP=0): | |||||
BATCH_SIZE = batch_size | |||||
N_EPOCH = epochs | |||||
positive_y = np.ones((batch_size, 1), dtype=np.float32) | |||||
zero_y = positive_y * 0 | |||||
negative_y = -positive_y | |||||
positive_full_y = np.ones((BATCH_SIZE * TRAINING_RATIO, 1), dtype=np.float32) | |||||
dummy_y = np.zeros((BATCH_SIZE, 1), dtype=np.float32) | |||||
positive_full_enable_train = np.ones((len(x_train), 1), dtype = np.float32 ) | |||||
positive_full_enable_val = np.ones((len(x_val), 1), dtype =np.float32 ) | |||||
#positive_enable_train = np.ones((1, batch_size),dtype = np.float32 ) | |||||
#positive_full_train_enable = np.ones((1,BATCH_SIZE * TRAINING_RATIO ), dtype=np.float32 ) | |||||
best_validation_loss = None | |||||
callback = TrainValTensorBoard(write_graph=False) #TensorBoard(log_path) | |||||
callback.set_model(generator_model) | |||||
for epoch in range(N_EPOCH): | |||||
# np.random.shuffle(X_train) | |||||
print("Epoch: ", epoch) | |||||
print("Number of batches: ", int(y_train.shape[0] // BATCH_SIZE)) | |||||
discriminator_loss = [] | |||||
generator_loss = [] | |||||
minibatches_size = BATCH_SIZE * TRAINING_RATIO | |||||
shuffled_indexes = np.random.permutation(x_train.shape[0]) | |||||
shuffled_indexes_2 = np.random.permutation(x_train.shape[0]) | |||||
for i in range(int(y_train.shape[0] // (BATCH_SIZE * TRAINING_RATIO))): | |||||
batch_indexes = shuffled_indexes[i * minibatches_size:(i + 1) * minibatches_size] | |||||
batch_indexes_2 = shuffled_indexes_2[i * minibatches_size:(i + 1) * minibatches_size] | |||||
x = x_train[batch_indexes] | |||||
y = y_train[batch_indexes] | |||||
y_2 = y_train[batch_indexes_2] | |||||
x_2 = x_train[batch_indexes_2] | |||||
if epoch < N_WARM_UP: | |||||
for j in range(TRAINING_RATIO): | |||||
x_batch = x[j * BATCH_SIZE:(j + 1) * BATCH_SIZE] | |||||
y_batch = y[j * BATCH_SIZE:(j + 1) * BATCH_SIZE] | |||||
logg = generator_model.train_on_batch([x_batch, positive_y], [y_batch, zero_y]) | |||||
generator_loss.append(logg) | |||||
discriminator_loss.append(0) | |||||
else: | |||||
for j in range(TRAINING_RATIO): | |||||
x_batch = x[j * BATCH_SIZE:(j + 1) * BATCH_SIZE] | |||||
y_batch_2 = y_2[j * BATCH_SIZE:(j + 1) * BATCH_SIZE] | |||||
x_batch_2 = x_2[j * BATCH_SIZE:(j + 1) * BATCH_SIZE] | |||||
# noise = np.random.rand(BATCH_SIZE, 100).astype(np.float32) | |||||
noise = x_batch | |||||
discriminator_loss.append(discriminator_model.train_on_batch( | |||||
[y_batch_2, noise, x_batch_2], | |||||
[positive_y, negative_y, dummy_y])) | |||||
logg = generator_model.train_on_batch([x,positive_full_y], [y, positive_full_y]) | |||||
generator_loss.append(logg) | |||||
predicted_y_train, _ = generator_model.predict([x_train, positive_full_enable_train], batch_size=BATCH_SIZE) | |||||
predicted_y_val, _ = generator_model.predict([x_val, positive_full_enable_val], batch_size=BATCH_SIZE) | |||||
train_loss = log_loss(rescale_back_labels(y_train), rescale_back_labels(predicted_y_train)) | |||||
val_loss = log_loss(y_val, rescale_back_labels(predicted_y_val)) | |||||
callback.on_epoch_end(epoch, logs={'discriminator_loss': (np.sum(np.asarray(discriminator_loss)) if discriminator_loss else -1), | |||||
'generator_loss': (np.sum(np.asarray(generator_loss)) if generator_loss else -1) ,'train_loss':train_loss ,'val_loss': val_loss}) | |||||
print("train loss: {:.4f}, validation loss: {:.4f}, validation auc: {:.4f}, generator loss: {:.4f}, discriminator loss: {:.4f}".format( | |||||
train_loss, val_loss, compute_roc(rescale_back_labels(predicted_y_val), y_val), | |||||
(np.sum(np.asarray(generator_loss)) if generator_loss else -1) / x_train.shape[0], | |||||
(np.sum(np.asarray(discriminator_loss)) if discriminator_loss else -1) / x_train.shape[0])) | |||||
if best_validation_loss is None or best_validation_loss > val_loss: | |||||
print('\nEpoch %05d: improved from %0.5f,' | |||||
' saving model to %s and %s' | |||||
% (epoch + 1, val_loss, generator_model_path, discriminator_model_path)) | |||||
best_validation_loss = val_loss | |||||
generator_model.save(generator_model_path, overwrite=True) | |||||
discriminator_model.save(discriminator_model_path, overwrite=True) | |||||
def model(params, batch_size=128, nb_epoch=50, is_train=True): | |||||
start_time = time.time() | |||||
logging.info("Loading Data") | |||||
train_data, train_labels, test_data, test_labels, val_data, val_labels = load_data2() | |||||
train_labels = rescale_labels(train_labels) | |||||
nb_classes = train_labels.shape[1] | |||||
logging.info("Data loaded in %d sec" % (time.time() - start_time)) | |||||
logging.info("Training data size: %d" % len(train_data)) | |||||
logging.info("Validation data size: %d" % len(val_data)) | |||||
logging.info("Test data size: %d" % len(test_data)) | |||||
generator_model_path = DATA_ROOT + 'models/new_model_seq_mt_10000_1_loaded_pretrained_new_' + FUNCTION + '.h5' #_loaded_pretrained_new | |||||
discriminator_model_path = DATA_ROOT + 'models/new_model_disc_seq_mt_' + FUNCTION + '.h5' | |||||
logging.info('Starting training the model') | |||||
train_generator = DataGenerator(batch_size, nb_classes) | |||||
train_generator.fit(train_data, train_labels) | |||||
valid_generator = DataGenerator(batch_size, nb_classes) | |||||
valid_generator.fit(val_data, val_labels) | |||||
test_generator = DataGenerator(batch_size, nb_classes) | |||||
test_generator.fit(test_data, test_labels) | |||||
if is_train: | |||||
generator_model, discriminator_model = get_model(params, nb_classes, batch_size) | |||||
generator_model.load_weights(DATA_ROOT + 'models/new_model_seq_mt_1_0_' + FUNCTION + '.h5') | |||||
train_wgan(generator_model, discriminator_model, batch_size=batch_size, epochs=nb_epoch, | |||||
x_train=train_data, y_train=train_labels, x_val=val_data, y_val=val_labels, | |||||
generator_model_path=generator_model_path, | |||||
discriminator_model_path=discriminator_model_path) | |||||
logging.info('Loading best model') | |||||
model = load_model(generator_model_path, | |||||
custom_objects={'generator_recunstruction_loss_new': generator_recunstruction_loss_new, | |||||
'wasserstein_loss': wasserstein_loss}) | |||||
logging.info('Predicting') | |||||
preds = model.predict_generator(test_generator, steps=len(test_data) / batch_size)[0] | |||||
preds = rescale_back_labels(preds) | |||||
logging.info('Computing performance') | |||||
f, p, r, t, preds_max = compute_performance(preds, test_labels) | |||||
roc_auc = compute_roc(preds, test_labels) | |||||
mcc = compute_mcc(preds_max, test_labels) | |||||
aupr , _ = compute_aupr(preds, test_labels) | |||||
m_pr_max, m_rc_max, m_f1_max, M_pr_max, M_rc_max, M_f1_max = micro_macro_function_centric_f1(preds.T, test_labels.T) | |||||
tpr, total_rule = tpr_score(preds_max) | |||||
logging.info('Protein centric macro Th, PR, RC, F1: \t %f %f %f %f' % (t, p, r, f)) | |||||
logging.info('ROC AUC: \t %f ' % (roc_auc, )) | |||||
logging.info('MCC: \t %f ' % (mcc, )) | |||||
logging.info('AUPR: \t %f ' % (aupr, )) | |||||
logging.info('TPR from total rule: \t %f \t %f' % (tpr, total_rule)) | |||||
logging.info('Function centric macro PR, RC, F1: \t %f %f %f' % (M_pr_max, M_rc_max, M_f1_max) ) | |||||
logging.info('Function centric micro PR, RC, F1: \t %f %f %f' % (m_pr_max, m_rc_max, m_f1_max) ) | |||||
function_centric_performance(preds.T, test_labels.T, rescale_back_labels(train_labels).T, t) | |||||
def tpr_score(preds): | |||||
hierarchy_f = open("data2/mtdnn_data_svmlight/" + FUNCTION + "_hierarchy.txt", "r") | |||||
hiers = hierarchy_f.readlines() | |||||
hiers.pop(0) | |||||
tree = [] | |||||
for i in range(len(hiers)): | |||||
sample = [] | |||||
str_sample = hiers[i].split() | |||||
for j in range(1, len(str_sample)): | |||||
sample.append(int(str_sample[j])) | |||||
tree.append(sample) | |||||
my_dict = {} | |||||
for i in range(preds.shape[0]): | |||||
my_dict[str(i)] = [] | |||||
total_rule = 0 | |||||
for i in range(len(tree)): | |||||
for j in range(len(tree[i])): | |||||
my_dict[str(tree[i][j]-1)].append(i) | |||||
total_rule +=1 | |||||
tpr = 0 | |||||
for i in range(preds.shape[0]): | |||||
for j in range(preds.shape[1]): | |||||
if preds[i,j] ==1: | |||||
parents = my_dict[str(j)] | |||||
for k in range(len(parents)): | |||||
if preds[i, parents[k]] == 0: | |||||
tpr = tpr +1 | |||||
return tpr/preds.shape[0], total_rule | |||||
def function_centric_performance(preds, labels, labels_train, threshold): | |||||
results = [] | |||||
av_f = 0 | |||||
preds = np.round(preds, 2) | |||||
for i in range(preds.shape[0]): | |||||
predictions = (preds[i, :] > threshold).astype(np.int32) | |||||
tp = np.sum(predictions * labels[i, :]) | |||||
fp = np.sum(predictions) - tp | |||||
fn = np.sum(labels[i, :]) - tp | |||||
if tp > 0: | |||||
precision = tp / (1.0 * (tp + fp)) | |||||
recall = tp / (1.0 * (tp + fn)) | |||||
f = 2 * precision * recall / (precision + recall) | |||||
else: | |||||
if fp == 0 and fn == 0: | |||||
precision = 1 | |||||
recall = 1 | |||||
f = 1 | |||||
else: | |||||
precision = 0 | |||||
recall = 0 | |||||
f = 0 | |||||
f_max = f | |||||
av_f += f | |||||
p_max = precision | |||||
r_max = recall | |||||
num_prots_train = np.sum(labels_train[i, :]) | |||||
results.append([mt_funcs[i], num_prots_train, f_max, p_max, r_max]) | |||||
print(av_f/preds.shape[0]) | |||||
results = pd.DataFrame(results) | |||||
results.to_csv('MT_1_0_results' + FUNCTION + '.txt', sep='\t', index=False) | |||||
predictions = (preds > threshold).astype(np.int32) | |||||
hitmap_test = (np.dot(predictions, predictions.T)> 0).astype(np.int32) | |||||
hitmap_train =(np.dot(labels_train, labels_train.T) > 0).astype(np.int32) | |||||
logging.info('Heatmap scores:\t MSE:%f \t SSIM %f ' % (mean_squared_error(hitmap_test, hitmap_train), measure.compare_ssim(hitmap_test, hitmap_train))) | |||||
#hitmap_test = pd.DataFrame(hitmap_test) | |||||
#hitmap_test.to_csv('hitmap_1_1_' + FUNCTION + '.txt', sep='\t', index=False) | |||||
#hitmap_train = pd.DataFrame(hitmap_train) | |||||
#hitmap_train.to_csv('hitmap_train_' + FUNCTION + '.txt', sep='\t', index=False) | |||||
#co_occure = np.zeros(shape=[predictions.shape[0], predictions.shape[0]]) | |||||
#mutual_ex = np.zeros(shape=[predictions.shape[0], predictions.shape[0]]) | |||||
#check_co_occur_test = np.zeros(shape=[predictions.shape[0], predictions.shape[0]]) | |||||
#for i in range(predictions.shape[0]): | |||||
# for j in range(predictions.shape[0]): | |||||
# temp = np.logical_xor(labels_train[i,:], labels_train[j,:]) | |||||
# if np.sum(temp) ==0: | |||||
# co_occure[i, j] = 1 | |||||
# temp = np.dot(labels_train[i,:], labels_train[j,:]) | |||||
# if np.sum(temp) ==0: | |||||
# mutual_ex[i,j] = 1 | |||||
# check_co_occur_test[i, j] = (sum(np.logical_xor(labels_train[i,:], labels_train[j,:])) >0).astype(np.int32) | |||||
#logging.info('Mutual_exclucivity_distorsion:\t %f ' % (sum(sum(np.multiply(mutual_ex, hitmap_test))))) | |||||
#logging.info('Co_occurance_distorsion:\t %f ' % (sum(sum(np.multiply(co_occure, check_co_occur_test))))) | |||||
def micro_macro_function_centric_f1(preds, labels): | |||||
predictions = np.round(preds) | |||||
m_tp = 0 | |||||
m_fp = 0 | |||||
m_fn = 0 | |||||
M_pr = 0 | |||||
M_rc = 0 | |||||
for i in range(preds.shape[0]): | |||||
tp = np.sum(predictions[i, :] * labels[i, :]) | |||||
fp = np.sum(predictions[i, :]) - tp | |||||
fn = np.sum(labels[i, :]) - tp | |||||
m_tp += tp | |||||
m_fp += fp | |||||
m_fn += fn | |||||
if tp > 0: | |||||
pr = 1.0 * tp / (1.0 * (tp + fp)) | |||||
rc = 1.0 * tp / (1.0 * (tp + fn)) | |||||
else: | |||||
if fp == 0 and fn == 0: | |||||
pr = 1 | |||||
rc = 1 | |||||
else: | |||||
pr = 0 | |||||
rc = 0 | |||||
M_pr += pr | |||||
M_rc += rc | |||||
if m_tp > 0: | |||||
m_pr = 1.0 * m_tp / (1.0 * (m_tp + m_fp)) | |||||
m_rc = 1.0 * m_tp / (1.0 * (m_tp + m_fn)) | |||||
m_f1 = 2.0 * m_pr * m_rc / (m_pr + m_rc) | |||||
else: | |||||
if m_fp == 0 and m_fn == 0: | |||||
m_pr = 1 | |||||
m_rc = 1 | |||||
m_f1 = 1 | |||||
else: | |||||
m_pr = 0 | |||||
m_rc = 0 | |||||
m_f1 = 0 | |||||
M_pr /= preds.shape[0] | |||||
M_rc /= preds.shape[0] | |||||
if M_pr == 0 and M_rc == 0: | |||||
M_f1 = 0 | |||||
else: | |||||
M_f1 = 2.0 * M_pr * M_rc / (M_pr + M_rc) | |||||
return m_pr, m_rc, m_f1, M_pr, M_rc, M_f1 | |||||
def compute_roc(preds, labels): | |||||
# Compute ROC curve and ROC area for each class | |||||
fpr, tpr, _ = roc_curve(labels.flatten(), preds.flatten()) | |||||
roc_auc = auc(fpr, tpr) | |||||
return roc_auc | |||||
def compute_aupr(preds, labels): | |||||
# Compute ROC curve and ROC area for each class | |||||
pr, rc, threshold =precision_recall_curve(labels.flatten(), preds.flatten()) | |||||
pr_auc = auc(rc, pr) | |||||
#pr, rc, threshold =precision_recall_curve(labels.flatten(), preds.flatten(),average ='macro' ) | |||||
M_pr_auc = 0 | |||||
return pr_auc, M_pr_auc | |||||
def compute_mcc(preds, labels): | |||||
# Compute ROC curve and ROC area for each class | |||||
mcc = matthews_corrcoef(labels.flatten(), preds.flatten()) | |||||
return mcc | |||||
def compute_performance(preds, labels): | |||||
preds = np.round(preds, 2) | |||||
f_max = 0 | |||||
p_max = 0 | |||||
r_max = 0 | |||||
t_max = 0 | |||||
for t in range(1, 100): | |||||
threshold = t / 100.0 | |||||
predictions = (preds > threshold).astype(np.int32) | |||||
total = 0 | |||||
f = 0.0 | |||||
p = 0.0 | |||||
r = 0.0 | |||||
p_total = 0 | |||||
for i in range(labels.shape[0]): | |||||
tp = np.sum(predictions[i, :] * labels[i, :]) | |||||
fp = np.sum(predictions[i, :]) - tp | |||||
fn = np.sum(labels[i, :]) - tp | |||||
if tp == 0 and fp == 0 and fn == 0: | |||||
continue | |||||
total += 1 | |||||
if tp != 0: | |||||
p_total += 1 | |||||
precision = tp / (1.0 * (tp + fp)) | |||||
recall = tp / (1.0 * (tp + fn)) | |||||
p += precision | |||||
r += recall | |||||
if p_total == 0: | |||||
continue | |||||
r /= total | |||||
p /= p_total | |||||
if p + r > 0: | |||||
f = 2 * p * r / (p + r) | |||||
if f_max < f: | |||||
f_max = f | |||||
p_max = p | |||||
r_max = r | |||||
t_max = threshold | |||||
predictions_max = predictions | |||||
return f_max, p_max, r_max, t_max, predictions_max | |||||
if __name__ == '__main__': | |||||
main() |
# These functions are used to manipulate first dataset from DeepGO and taken from https://github.com/bio-ontology-research-group/deepgo. | |||||
from collections import deque | from collections import deque | ||||
from keras import backend as K | from keras import backend as K | ||||
from keras.callbacks import ModelCheckpoint | from keras.callbacks import ModelCheckpoint | ||||
import pandas as pd | import pandas as pd | ||||
from xml.etree import ElementTree as ET | from xml.etree import ElementTree as ET | ||||
BIOLOGICAL_PROCESS = 'GO:0008150' | BIOLOGICAL_PROCESS = 'GO:0008150' | ||||
MOLECULAR_FUNCTION = 'GO:0003674' | MOLECULAR_FUNCTION = 'GO:0003674' | ||||
CELLULAR_COMPONENT = 'GO:0005575' | CELLULAR_COMPONENT = 'GO:0005575' |