| @@ -0,0 +1,934 @@ | |||
| { | |||
| "cells": [ | |||
| { | |||
| "cell_type": "code", | |||
| "execution_count": 1, | |||
| "id": "9f087356", | |||
| "metadata": {}, | |||
| "outputs": [ | |||
| { | |||
| "name": "stderr", | |||
| "output_type": "stream", | |||
| "text": [ | |||
| "C:\\Users\\saeed\\Desktop\\Master\\bci\\lib\\site-packages\\tqdm\\auto.py:22: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", | |||
| " from .autonotebook import tqdm as notebook_tqdm\n" | |||
| ] | |||
| } | |||
| ], | |||
| "source": [ | |||
| "import torch\n", | |||
| "import torch.nn as nn\n", | |||
| "import torch.nn.functional as F\n", | |||
| "from sklearn.model_selection import train_test_split\n", | |||
| "from sklearn.model_selection import KFold, StratifiedKFold\n", | |||
| "import librosa\n", | |||
| "import librosa.display\n", | |||
| "import IPython.display as ipd\n", | |||
| "import matplotlib.pyplot as plt\n", | |||
| "import numpy as np\n", | |||
| "import scipy.io\n", | |||
| "from tqdm import tqdm\n", | |||
| "import glob\n", | |||
| "import os\n", | |||
| "import json\n", | |||
| "import pickle\n", | |||
| "from einops import rearrange\n", | |||
| "from captum.attr import DeepLift\n", | |||
| "from captum.attr import visualization as viz" | |||
| ] | |||
| }, | |||
| { | |||
| "cell_type": "code", | |||
| "execution_count": 2, | |||
| "id": "ba4bf52c", | |||
| "metadata": {}, | |||
| "outputs": [ | |||
| { | |||
| "name": "stdout", | |||
| "output_type": "stream", | |||
| "text": [ | |||
| "(1913, 62, 20, 11)\n" | |||
| ] | |||
| } | |||
| ], | |||
| "source": [ | |||
| "with open(\"data/normal_all_data.pkl\", \"rb\") as f:\n", | |||
| " all_data = pickle.load(f)\n", | |||
| "with open(\"data/all_label.pkl\", \"rb\") as f:\n", | |||
| " labels = pickle.load(f)\n", | |||
| "with open(\"data/vowel_label.pkl\", \"rb\") as f:\n", | |||
| " vowel_label = pickle.load(f)\n", | |||
| "with open(\"data/bilab_label.pkl\", \"rb\") as f:\n", | |||
| " bilab_label = pickle.load(f)\n", | |||
| "with open(\"data/nasal_label.pkl\", \"rb\") as f:\n", | |||
| " nasal_label = pickle.load(f)\n", | |||
| "with open(\"data/iy_label.pkl\", \"rb\") as f:\n", | |||
| " iy_label = pickle.load(f)\n", | |||
| "with open(\"data/uw_label.pkl\", \"rb\") as f:\n", | |||
| " uw_label = pickle.load(f)\n", | |||
| "\n", | |||
| "print(all_data.shape)" | |||
| ] | |||
| }, | |||
| { | |||
| "cell_type": "code", | |||
| "execution_count": 220, | |||
| "id": "17f8364a", | |||
| "metadata": {}, | |||
| "outputs": [ | |||
| { | |||
| "name": "stderr", | |||
| "output_type": "stream", | |||
| "text": [ | |||
| " 0%| | 0/1913 [00:00<?, ?it/s]C:\\Users\\saeed\\Desktop\\Master\\bci\\lib\\site-packages\\librosa\\util\\decorators.py:88: UserWarning: n_fft=250 is too small for input signal of length=11\n", | |||
| " return f(*args, **kwargs)\n", | |||
| " 5%|███▉ | 95/1913 [00:23<07:36, 3.98it/s]\n", | |||
| "\n", | |||
| "KeyboardInterrupt\n", | |||
| "\n" | |||
| ] | |||
| } | |||
| ], | |||
| "source": [ | |||
| "#calculate MFCCs with windowing\n", | |||
| "n_mfcc = 20\n", | |||
| "framesize = 1 * 250\n", | |||
| "hop_size = int(framesize/2)\n", | |||
| "\n", | |||
| "trials = []\n", | |||
| "for i, trial in enumerate(tqdm(data)):\n", | |||
| " channels = []\n", | |||
| " for j, channel in enumerate(trial):\n", | |||
| " mfccs = librosa.feature.mfcc(y=channel, n_mfcc=n_mfcc, n_fft=framesize, hop_length=hop_size, sr=250)\n", | |||
| " channels.append(np.array(mfccs))\n", | |||
| " trials.append(np.array(channels)) \n", | |||
| "mfc_data = np.array(trials)\n", | |||
| "\n", | |||
| "print(mfc_data.shape)" | |||
| ] | |||
| }, | |||
| { | |||
| "cell_type": "code", | |||
| "execution_count": 7, | |||
| "id": "2830a90b", | |||
| "metadata": {}, | |||
| "outputs": [], | |||
| "source": [ | |||
| "#save as (windows MFCCs)\n", | |||
| "with open('data/11_20mfc.pkl', 'wb') as f:\n", | |||
| " pickle.dump(mfc_data, f)" | |||
| ] | |||
| }, | |||
| { | |||
| "cell_type": "code", | |||
| "execution_count": 3, | |||
| "id": "86e2469b", | |||
| "metadata": {}, | |||
| "outputs": [], | |||
| "source": [ | |||
| "class Dataset():\n", | |||
| " def __init__(self, data, label, oversample=True):\n", | |||
| " self.data = data\n", | |||
| " self.label = label\n", | |||
| " self.over = oversample\n", | |||
| " self.train = None\n", | |||
| " self.val = None\n", | |||
| " self.test = None\n", | |||
| " \n", | |||
| " def picturize(self):\n", | |||
| " trials = []\n", | |||
| " depth = self.data.shape[2]\n", | |||
| " for trial in self.data:\n", | |||
| " pic = np.zeros((7,9,depth,11))\n", | |||
| " pic[0,2] = trial[3]\n", | |||
| " pic[0,3] = trial[0]\n", | |||
| " pic[0,4] = trial[1]\n", | |||
| " pic[0,5] = trial[2]\n", | |||
| " pic[0,6] = trial[4]\n", | |||
| " pic[1,:] = trial[5:14]\n", | |||
| " pic[2,:] = trial[14:23]\n", | |||
| " pic[3,:] = trial[23:32]\n", | |||
| " pic[4,:] = trial[32:41]\n", | |||
| " pic[5,:] = trial[41:50]\n", | |||
| " pic[6,0] = trial[50]\n", | |||
| " pic[6,1] = trial[51]\n", | |||
| " pic[6,2] = trial[52]\n", | |||
| " pic[6,3] = trial[58]\n", | |||
| " pic[6,4] = trial[53]\n", | |||
| " pic[6,5] = trial[60]\n", | |||
| " pic[6,6] = trial[54]\n", | |||
| " pic[6,7] = trial[55]\n", | |||
| " pic[6,8] = trial[56]\n", | |||
| " trials.append(pic)\n", | |||
| " self.data = np.array(trials)\n", | |||
| " return self.data\n", | |||
| " \n", | |||
| " def split(self, train_idx, test_idx, val_size=0.1, norm=False):\n", | |||
| " train_val_data = np.stack([self.data[index] for index in train_idx])\n", | |||
| " train_val_label = [self.label[index] for index in train_idx]\n", | |||
| " test_data = np.stack([self.data[index] for index in test_idx])\n", | |||
| " test_label = [self.label[index] for index in test_idx]\n", | |||
| " \n", | |||
| " if norm:\n", | |||
| " Max = np.max(train_val_data, axis=(0,1,2,4), keepdims=True)\n", | |||
| " Min = np.min(train_val_data, axis=(0,1,2,4), keepdims=True)\n", | |||
| " train_val_data = (train_val_data-Min)/(Max-Min)\n", | |||
| "\n", | |||
| " Max_test = np.max(test_data, axis=(0,1,2,4), keepdims=True)\n", | |||
| " Min_test = np.min(test_data, axis=(0,1,2,4), keepdims=True)\n", | |||
| " test_data = (test_data-Min)/(Max-Min)\n", | |||
| " \n", | |||
| " train_val = [[train_val_data[i], train_val_label[i]] for i in range(len(train_val_data))]\n", | |||
| " self.test = [[test_data[i], test_label[i]] for i in range(len(test_data))]\n", | |||
| " \n", | |||
| " num_train_val = len(train_val)\n", | |||
| " indices = list(range(num_train_val))\n", | |||
| " np.random.shuffle(indices)\n", | |||
| " split = int(np.floor(val_size*num_train_val))\n", | |||
| " train, val = [train_val[i] for i in indices[split:]] ,[train_val[i] for i in indices[:split]]\n", | |||
| " \n", | |||
| " if self.over:\n", | |||
| " train_labels = [data[1] for data in train]\n", | |||
| " _, counts = np.unique(train_labels, return_counts=True)\n", | |||
| " print(counts)\n", | |||
| " if counts[1]>counts[0]:\n", | |||
| " label0 = [data for data in train if data[1]==0]\n", | |||
| " coef = int(counts[1]/counts[0])\n", | |||
| " for i in range(coef):\n", | |||
| " train = train + label0\n", | |||
| " elif counts[1]<counts[0]:\n", | |||
| " label1 = [data for data in train if data[1]==1]\n", | |||
| " coef = int(counts[0]/counts[1])\n", | |||
| " for i in range(coef):\n", | |||
| " train = train + label1\n", | |||
| " self.train = train\n", | |||
| " self.val = val\n", | |||
| " \n", | |||
| " return self.train, self.val, self.test\n", | |||
| " \n", | |||
| " \n", | |||
| " def show(self):\n", | |||
| " print('data shape = ', self.data.shape)\n", | |||
| " \n", | |||
| " if self.train is None:\n", | |||
| " print('train not creaeted!')\n", | |||
| " else:\n", | |||
| " print('train shape = ', len(self.train))\n", | |||
| " \n", | |||
| " if self.val is None:\n", | |||
| " print('validation not creaeted!')\n", | |||
| " else:\n", | |||
| " print('validation shape = ', len(self.val))\n", | |||
| " \n", | |||
| " if self.test is None:\n", | |||
| " print('test not creaeted!')\n", | |||
| " else:\n", | |||
| " print('test shape = ', len(self.test))" | |||
| ] | |||
| }, | |||
| { | |||
| "cell_type": "code", | |||
| "execution_count": 9, | |||
| "id": "4fb6541e", | |||
| "metadata": {}, | |||
| "outputs": [], | |||
| "source": [ | |||
| "def train_model(train_loader, val_loader, epochs, lr, fold, steps):\n", | |||
| " print('creating model...')\n", | |||
| " model = cnn3d().float()\n", | |||
| " optimizer = torch.optim.Adam(model.parameters(), lr=lr)\n", | |||
| " criterion = nn.BCELoss()\n", | |||
| "\n", | |||
| " scheduler = torch.optim.lr_scheduler.OneCycleLR(optimizer, total_steps=steps, max_lr=lr*10)\n", | |||
| " scheduler1 = torch.optim.lr_scheduler.StepLR(optimizer, step_size=2, gamma=0.1)\n", | |||
| " l1_lambda = 0.0001\n", | |||
| " \n", | |||
| " min_val_loss = np.inf\n", | |||
| " max_val_acc = 0\n", | |||
| " for epoch in range(epochs):\n", | |||
| " print('epoch: ', epoch+1)\n", | |||
| " train_loss = 0\n", | |||
| " train_correct = 0\n", | |||
| " model.train()\n", | |||
| " for iteration, (data,label) in enumerate(train_loader):\n", | |||
| " optimizer.zero_grad()\n", | |||
| " output = model(data.float())\n", | |||
| " label = torch.reshape(label, (-1,1))\n", | |||
| " label = label.float()\n", | |||
| " loss = criterion(output, label)\n", | |||
| " for W in model.parameters():\n", | |||
| " loss = loss + l1_lambda*W.norm(1)\n", | |||
| " loss.backward()\n", | |||
| " optimizer.step()\n", | |||
| " scheduler.step()\n", | |||
| " targets = [1 if output[i].round()==label[i] else 0 for i in range(len(label))]\n", | |||
| " #print([output[i].round().item() for i in range(len(label))])\n", | |||
| " train_correct += sum(targets)\n", | |||
| " train_loss += loss.item()*data.shape[0]\n", | |||
| " #scheduler1.step() \n", | |||
| " train_acc = train_correct/len(train_loader.sampler) \n", | |||
| " train_loss = train_loss/len(train_loader.sampler)\n", | |||
| " \n", | |||
| " val_loss = 0\n", | |||
| " val_correct = 0\n", | |||
| " model.eval()\n", | |||
| " for data, label in val_loader:\n", | |||
| " output = model(data.float())\n", | |||
| " label = torch.reshape(label, (-1,1))\n", | |||
| " label = label.float()\n", | |||
| " loss = criterion(output, label) \n", | |||
| " val_loss += loss.item()*data.shape[0]\n", | |||
| " targets = [1 if output[i].round()==label[i] else 0 for i in range(len(label))]\n", | |||
| " val_correct += sum(targets)\n", | |||
| " \n", | |||
| " val_loss = val_loss/len(val_loader.sampler)\n", | |||
| " val_acc = val_correct/len(val_loader.sampler)\n", | |||
| " if val_loss <= min_val_loss:\n", | |||
| " print(\"validation loss decreased ({:.6f} ---> {:.6f}), val_acc = {}\".format(min_val_loss, val_loss, val_acc))\n", | |||
| " torch.save(model.state_dict(), 'train/model'+str(fold)+'.pt')\n", | |||
| " min_val_loss = val_loss\n", | |||
| " torch.save(model.state_dict(), 'train/last_model'+str(fold)+'.pt') \n", | |||
| " print('epoch {}: train loss = {}, train acc = {},\\nval_loss = {}, val_acc = {}\\n'\n", | |||
| " .format(epoch+1, train_loss, train_acc, val_loss, val_acc))\n", | |||
| " \n", | |||
| " if int(train_acc)==1:\n", | |||
| " print('!!! overfitted !!!')\n", | |||
| " break\n", | |||
| " model.train()" | |||
| ] | |||
| }, | |||
| { | |||
| "cell_type": "code", | |||
| "execution_count": 10, | |||
| "id": "7d61fc48", | |||
| "metadata": {}, | |||
| "outputs": [], | |||
| "source": [ | |||
| "def evaluate_model(test_loader, fold):\n", | |||
| " model =cnn3d().float()\n", | |||
| " model.load_state_dict(torch.load('train/model'+str(fold)+'.pt'))\n", | |||
| " \n", | |||
| " n_correct = 0\n", | |||
| " model.eval()\n", | |||
| " for data, label in test_loader:\n", | |||
| " output = model(data.float())\n", | |||
| " targets = [1 if output[i].round()==label[i] else 0 for i in range(len(label))]\n", | |||
| " print(targets)\n", | |||
| " n_correct += sum(targets) \n", | |||
| " test_accs = n_correct/len(test_loader.sampler)\n", | |||
| " print('early stoping results:\\n\\t', test_accs)\n", | |||
| " \n", | |||
| " n_correct = 0\n", | |||
| " model.eval()\n", | |||
| " for data, label in train_loader:\n", | |||
| " output = model(data.float())\n", | |||
| " targets = [1 if output[i].round()==label[i] else 0 for i in range(len(label))]\n", | |||
| " n_correct += sum(targets)\n", | |||
| " \n", | |||
| " train_accs = n_correct/len(train_loader.sampler)\n", | |||
| " print('\\t', train_accs)\n", | |||
| " \n", | |||
| " model = cnn3d().float()\n", | |||
| " model.load_state_dict(torch.load('train/last_model'+str(fold)+'.pt'))\n", | |||
| " \n", | |||
| " n_correct = 0\n", | |||
| " model.eval()\n", | |||
| " for data, label in test_loader:\n", | |||
| " output = model(data.float())\n", | |||
| " targets = [1 if output[i].round()==label[i] else 0 for i in range(len(label))]\n", | |||
| " print(targets)\n", | |||
| " n_correct += sum(targets)\n", | |||
| " test_accs_over = n_correct/len(test_loader.sampler)\n", | |||
| " print('full train results:\\n\\t', test_accs_over)\n", | |||
| " \n", | |||
| " n_correct = 0\n", | |||
| " model.eval()\n", | |||
| " for data, label in train_loader:\n", | |||
| " output = model(data.float())\n", | |||
| " targets = [1 if output[i].round()==label[i] else 0 for i in range(len(label))]\n", | |||
| " n_correct += sum(targets)\n", | |||
| " train_accs_over = n_correct/len(train_loader.sampler)\n", | |||
| " print('\\t', train_accs_over)" | |||
| ] | |||
| }, | |||
| { | |||
| "cell_type": "code", | |||
| "execution_count": 11, | |||
| "id": "402f6c76", | |||
| "metadata": {}, | |||
| "outputs": [], | |||
| "source": [ | |||
| "def calculate_steps(train_loader, epochs):\n", | |||
| " steps = 0\n", | |||
| " for epoch in range(epochs):\n", | |||
| " for data, label in train_loader:\n", | |||
| " steps += 1\n", | |||
| " return steps" | |||
| ] | |||
| }, | |||
| { | |||
| "cell_type": "code", | |||
| "execution_count": 43, | |||
| "id": "076c9c78", | |||
| "metadata": {}, | |||
| "outputs": [], | |||
| "source": [ | |||
| "class cnn3d(nn.Module):\n", | |||
| " def __init__(self):\n", | |||
| " super().__init__()\n", | |||
| " self.conv1 = nn.Conv3d(20, 16, kernel_size=(3, 3, 3), padding=1)\n", | |||
| " self.conv2 = nn.Conv3d(16, 32, kernel_size=(3, 3, 3), padding=0)\n", | |||
| " self.pool = nn.MaxPool3d((2, 2, 2), stride=2)\n", | |||
| " self.fc1 = nn.Linear(192, 128)\n", | |||
| " self.fc2 = nn.Linear(128, 1)\n", | |||
| " self.drop = nn.Dropout(0.25)\n", | |||
| " self.batch1 = nn.BatchNorm3d(16)\n", | |||
| " self.batch2 = nn.BatchNorm3d(32)\n", | |||
| " self.batch3 = nn.BatchNorm1d(128)\n", | |||
| " \n", | |||
| " def forward(self, x):\n", | |||
| " x = rearrange(x, 'n h w m t -> n m t h w')\n", | |||
| " out = self.pool(F.relu(self.batch1(self.conv1(x))))\n", | |||
| " out = F.relu(self.batch2(self.conv2(out)))\n", | |||
| " out = out.view(out.size(0), -1)\n", | |||
| " out = self.drop(F.relu(self.batch3(self.fc1(out))))\n", | |||
| " out = F.sigmoid(self.fc2(out))\n", | |||
| " return out" | |||
| ] | |||
| }, | |||
| { | |||
| "cell_type": "code", | |||
| "execution_count": 44, | |||
| "id": "1b859362", | |||
| "metadata": {}, | |||
| "outputs": [ | |||
| { | |||
| "data": { | |||
| "text/plain": [ | |||
| "tensor([[0.6052],\n", | |||
| " [0.5052],\n", | |||
| " [0.2035],\n", | |||
| " [0.6347]], grad_fn=<SigmoidBackward0>)" | |||
| ] | |||
| }, | |||
| "execution_count": 44, | |||
| "metadata": {}, | |||
| "output_type": "execute_result" | |||
| } | |||
| ], | |||
| "source": [ | |||
| "#test model\n", | |||
| "model = cnn3d()\n", | |||
| "sample = torch.rand((4,7,9,20,11))\n", | |||
| "model(sample)" | |||
| ] | |||
| }, | |||
| { | |||
| "cell_type": "code", | |||
| "execution_count": 45, | |||
| "id": "7c72830d", | |||
| "metadata": {}, | |||
| "outputs": [], | |||
| "source": [ | |||
| "#congig\n", | |||
| "\n", | |||
| "val_size = 0.25\n", | |||
| "n_epochs = 100\n", | |||
| "batch_size = 128\n", | |||
| "print_every = 10\n", | |||
| "lr = 0.00001\n", | |||
| "k = 10\n", | |||
| "skf=StratifiedKFold(n_splits=k, shuffle=True, random_state=32)" | |||
| ] | |||
| }, | |||
| { | |||
| "cell_type": "code", | |||
| "execution_count": 46, | |||
| "id": "96df8fcb", | |||
| "metadata": {}, | |||
| "outputs": [ | |||
| { | |||
| "name": "stdout", | |||
| "output_type": "stream", | |||
| "text": [ | |||
| "(1913, 62, 17, 11)\n" | |||
| ] | |||
| } | |||
| ], | |||
| "source": [ | |||
| "print(all_data[:,:,3:,:].shape)" | |||
| ] | |||
| }, | |||
| { | |||
| "cell_type": "code", | |||
| "execution_count": 47, | |||
| "id": "9eb46d39", | |||
| "metadata": { | |||
| "scrolled": true | |||
| }, | |||
| "outputs": [ | |||
| { | |||
| "name": "stdout", | |||
| "output_type": "stream", | |||
| "text": [ | |||
| "------------fold 0-----------\n", | |||
| "[ 291 1258]\n", | |||
| "0.4636933284187247\n", | |||
| "data shape = (1913, 7, 9, 20, 11)\n", | |||
| "train shape = 2713\n", | |||
| "validation shape = 172\n", | |||
| "test shape = 192\n", | |||
| "calculating total steps...\n", | |||
| "creating model...\n", | |||
| "epoch: 1\n" | |||
| ] | |||
| }, | |||
| { | |||
| "name": "stderr", | |||
| "output_type": "stream", | |||
| "text": [ | |||
| "C:\\Users\\saeed\\Desktop\\Master\\bci\\lib\\site-packages\\torch\\nn\\functional.py:1960: UserWarning: nn.functional.sigmoid is deprecated. Use torch.sigmoid instead.\n", | |||
| " warnings.warn(\"nn.functional.sigmoid is deprecated. Use torch.sigmoid instead.\")\n" | |||
| ] | |||
| }, | |||
| { | |||
| "name": "stdout", | |||
| "output_type": "stream", | |||
| "text": [ | |||
| "validation loss decreased (inf ---> 0.679123), val_acc = 0.7093023255813954\n", | |||
| "epoch 1: train loss = 0.8683970651853318, train acc = 0.5208256542572798,\n", | |||
| "val_loss = 0.6791226988614991, val_acc = 0.7093023255813954\n", | |||
| "\n", | |||
| "epoch: 2\n", | |||
| "epoch 2: train loss = 0.8702899437086019, train acc = 0.524511610762993,\n", | |||
| "val_loss = 0.7166987934777903, val_acc = 0.4186046511627907\n", | |||
| "\n", | |||
| "epoch: 3\n", | |||
| "epoch 3: train loss = 0.8651134706141103, train acc = 0.5344636933284187,\n", | |||
| "val_loss = 0.7987130630848019, val_acc = 0.3430232558139535\n", | |||
| "\n", | |||
| "epoch: 4\n", | |||
| "epoch 4: train loss = 0.8593147574778724, train acc = 0.5407298193881312,\n", | |||
| "val_loss = 0.8141745814057284, val_acc = 0.3023255813953488\n", | |||
| "\n", | |||
| "epoch: 5\n", | |||
| "epoch 5: train loss = 0.8594019789780104, train acc = 0.539255436785846,\n", | |||
| "val_loss = 0.81581727987112, val_acc = 0.3081395348837209\n", | |||
| "\n", | |||
| "epoch: 6\n", | |||
| "epoch 6: train loss = 0.855004380604371, train acc = 0.5477331367489864,\n", | |||
| "val_loss = 0.8083413853201755, val_acc = 0.3372093023255814\n", | |||
| "\n", | |||
| "epoch: 7\n", | |||
| "epoch 7: train loss = 0.8482353424744724, train acc = 0.5547364541098415,\n", | |||
| "val_loss = 0.7954940158267354, val_acc = 0.3546511627906977\n", | |||
| "\n", | |||
| "epoch: 8\n", | |||
| "epoch 8: train loss = 0.8403365777464226, train acc = 0.5772207887946922,\n", | |||
| "val_loss = 0.7943125145379887, val_acc = 0.3430232558139535\n", | |||
| "\n", | |||
| "epoch: 9\n", | |||
| "epoch 9: train loss = 0.8323755666772862, train acc = 0.5794323626981202,\n", | |||
| "val_loss = 0.7893233784409457, val_acc = 0.3546511627906977\n", | |||
| "\n", | |||
| "epoch: 10\n", | |||
| "epoch 10: train loss = 0.8240972711202451, train acc = 0.5927018061186878,\n", | |||
| "val_loss = 0.7756274495013925, val_acc = 0.37209302325581395\n", | |||
| "\n", | |||
| "epoch: 11\n", | |||
| "epoch 11: train loss = 0.8123821243341673, train acc = 0.618134906008109,\n", | |||
| "val_loss = 0.7595333221346833, val_acc = 0.38953488372093026\n", | |||
| "\n", | |||
| "epoch: 12\n", | |||
| "epoch 12: train loss = 0.8052803598511847, train acc = 0.6376704754883893,\n", | |||
| "val_loss = 0.7610093549240468, val_acc = 0.38372093023255816\n", | |||
| "\n", | |||
| "epoch: 13\n", | |||
| "epoch 13: train loss = 0.794128361483847, train acc = 0.6439366015481017,\n", | |||
| "val_loss = 0.746018763198409, val_acc = 0.43023255813953487\n", | |||
| "\n", | |||
| "epoch: 14\n", | |||
| "epoch 14: train loss = 0.7812480943869982, train acc = 0.6804275709546628,\n", | |||
| "val_loss = 0.7397682084593662, val_acc = 0.42441860465116277\n", | |||
| "\n", | |||
| "epoch: 15\n", | |||
| "epoch 15: train loss = 0.770653328441229, train acc = 0.6859565057132326,\n", | |||
| "val_loss = 0.7616525181504183, val_acc = 0.38953488372093026\n", | |||
| "\n", | |||
| "epoch: 16\n", | |||
| "epoch 16: train loss = 0.7537735868897598, train acc = 0.7150755621083671,\n", | |||
| "val_loss = 0.692143508168154, val_acc = 0.5348837209302325\n", | |||
| "\n", | |||
| "epoch: 17\n", | |||
| "epoch 17: train loss = 0.7378950803604154, train acc = 0.7412458532989311,\n", | |||
| "val_loss = 0.7284444473510565, val_acc = 0.43023255813953487\n", | |||
| "\n", | |||
| "epoch: 18\n", | |||
| "validation loss decreased (0.679123 ---> 0.677328), val_acc = 0.5872093023255814\n", | |||
| "epoch 18: train loss = 0.7233544636642718, train acc = 0.7640987836343531,\n", | |||
| "val_loss = 0.6773282483566639, val_acc = 0.5872093023255814\n", | |||
| "\n", | |||
| "epoch: 19\n", | |||
| "epoch 19: train loss = 0.699734561411692, train acc = 0.7876889052709178,\n", | |||
| "val_loss = 0.6925027619960696, val_acc = 0.5523255813953488\n", | |||
| "\n", | |||
| "epoch: 20\n", | |||
| "validation loss decreased (0.677328 ---> 0.633773), val_acc = 0.6686046511627907\n", | |||
| "epoch 20: train loss = 0.6822101758539655, train acc = 0.8112790269074824,\n", | |||
| "val_loss = 0.6337725229041521, val_acc = 0.6686046511627907\n", | |||
| "\n", | |||
| "epoch: 21\n", | |||
| "epoch 21: train loss = 0.6548226526905767, train acc = 0.832288978990048,\n", | |||
| "val_loss = 0.7115770703138307, val_acc = 0.5174418604651163\n", | |||
| "\n", | |||
| "epoch: 22\n", | |||
| "epoch 22: train loss = 0.6249409928736632, train acc = 0.8698857353483229,\n", | |||
| "val_loss = 0.643924496894659, val_acc = 0.5930232558139535\n", | |||
| "\n", | |||
| "epoch: 23\n", | |||
| "epoch 23: train loss = 0.5943754564516227, train acc = 0.8772576483597494,\n", | |||
| "val_loss = 0.6660033076308495, val_acc = 0.5697674418604651\n", | |||
| "\n", | |||
| "epoch: 24\n", | |||
| "validation loss decreased (0.633773 ---> 0.579030), val_acc = 0.7151162790697675\n", | |||
| "epoch 24: train loss = 0.5627755398817094, train acc = 0.9012163656468853,\n", | |||
| "val_loss = 0.5790298899938894, val_acc = 0.7151162790697675\n", | |||
| "\n", | |||
| "epoch: 25\n", | |||
| "epoch 25: train loss = 0.5276576605090961, train acc = 0.92480648728345,\n", | |||
| "val_loss = 0.5794833940128947, val_acc = 0.7151162790697675\n", | |||
| "\n", | |||
| "epoch: 26\n", | |||
| "epoch 26: train loss = 0.4913847099425298, train acc = 0.9343899741983045,\n", | |||
| "val_loss = 0.6454916582551113, val_acc = 0.622093023255814\n", | |||
| "\n", | |||
| "epoch: 27\n", | |||
| "validation loss decreased (0.579030 ---> 0.547536), val_acc = 0.7441860465116279\n", | |||
| "epoch 27: train loss = 0.45694537973254534, train acc = 0.9502395871728714,\n", | |||
| "val_loss = 0.547536434129227, val_acc = 0.7441860465116279\n", | |||
| "\n", | |||
| "epoch: 28\n", | |||
| "validation loss decreased (0.547536 ---> 0.514732), val_acc = 0.8023255813953488\n", | |||
| "epoch 28: train loss = 0.42175784723546905, train acc = 0.9638776262440103,\n", | |||
| "val_loss = 0.5147316435048747, val_acc = 0.8023255813953488\n", | |||
| "\n", | |||
| "epoch: 29\n", | |||
| "epoch 29: train loss = 0.39061159156935704, train acc = 0.9712495392554368,\n", | |||
| "val_loss = 0.535475094651067, val_acc = 0.7616279069767442\n", | |||
| "\n", | |||
| "epoch: 30\n", | |||
| "validation loss decreased (0.514732 ---> 0.508574), val_acc = 0.8081395348837209\n", | |||
| "epoch 30: train loss = 0.36516626786139894, train acc = 0.9764098783634353,\n", | |||
| "val_loss = 0.5085743651833645, val_acc = 0.8081395348837209\n", | |||
| "\n", | |||
| "epoch: 31\n", | |||
| "epoch 31: train loss = 0.33421938774377447, train acc = 0.9826760044231478,\n", | |||
| "val_loss = 0.5448793408482574, val_acc = 0.7616279069767442\n", | |||
| "\n", | |||
| "epoch: 32\n", | |||
| "epoch 32: train loss = 0.3104572842646647, train acc = 0.9900479174345743,\n", | |||
| "val_loss = 0.5426593824874523, val_acc = 0.7965116279069767\n", | |||
| "\n", | |||
| "epoch: 33\n", | |||
| "epoch 33: train loss = 0.28988734955415046, train acc = 0.9904165130851456,\n", | |||
| "val_loss = 0.5494307279586792, val_acc = 0.7848837209302325\n", | |||
| "\n", | |||
| "epoch: 34\n", | |||
| "epoch 34: train loss = 0.26993356656641526, train acc = 0.9941024695908588,\n", | |||
| "val_loss = 0.5200380724529887, val_acc = 0.813953488372093\n", | |||
| "\n", | |||
| "epoch: 35\n", | |||
| "epoch 35: train loss = 0.2577803114266401, train acc = 0.9959454478437154,\n", | |||
| "val_loss = 0.5192096496737281, val_acc = 0.8197674418604651\n", | |||
| "\n", | |||
| "epoch: 36\n", | |||
| "epoch 36: train loss = 0.24427844815222574, train acc = 0.997788426096572,\n", | |||
| "val_loss = 0.5306130952613298, val_acc = 0.8197674418604651\n", | |||
| "\n", | |||
| "epoch: 37\n", | |||
| "validation loss decreased (0.508574 ---> 0.504719), val_acc = 0.8372093023255814\n", | |||
| "epoch 37: train loss = 0.23392101167160517, train acc = 0.9981570217471434,\n", | |||
| "val_loss = 0.504719233097032, val_acc = 0.8372093023255814\n", | |||
| "\n", | |||
| "epoch: 38\n", | |||
| "epoch 38: train loss = 0.22321982001230103, train acc = 0.9992628086988573,\n", | |||
| "val_loss = 0.5188674448534499, val_acc = 0.8313953488372093\n", | |||
| "\n", | |||
| "epoch: 39\n", | |||
| "epoch 39: train loss = 0.2165969933942372, train acc = 0.9996314043494287,\n", | |||
| "val_loss = 0.5341297630653825, val_acc = 0.8372093023255814\n", | |||
| "\n", | |||
| "epoch: 40\n", | |||
| "epoch 40: train loss = 0.2110399665799125, train acc = 1.0,\n", | |||
| "val_loss = 0.5399310172990311, val_acc = 0.8197674418604651\n", | |||
| "\n", | |||
| "!!! overfitted !!!\n", | |||
| "[0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1]\n", | |||
| "[1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0]\n", | |||
| "early stoping results:\n", | |||
| "\t 0.7552083333333334\n", | |||
| "\t 0.9996314043494287\n", | |||
| "[1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1]\n", | |||
| "[1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1]\n", | |||
| "full train results:\n", | |||
| "\t 0.7395833333333334\n", | |||
| "\t 1.0\n", | |||
| "------------fold 1-----------\n", | |||
| "[ 283 1266]\n", | |||
| "0.47221186124580383\n", | |||
| "data shape = (1913, 7, 9, 20, 11)\n", | |||
| "train shape = 2681\n", | |||
| "validation shape = 172\n", | |||
| "test shape = 192\n", | |||
| "calculating total steps...\n" | |||
| ] | |||
| }, | |||
| { | |||
| "name": "stdout", | |||
| "output_type": "stream", | |||
| "text": [ | |||
| "creating model...\n", | |||
| "epoch: 1\n", | |||
| "validation loss decreased (inf ---> 0.646471), val_acc = 0.8255813953488372\n", | |||
| "epoch 1: train loss = 0.86992137868295, train acc = 0.5330100708690787,\n", | |||
| "val_loss = 0.6464709279149078, val_acc = 0.8255813953488372\n", | |||
| "\n", | |||
| "epoch: 2\n", | |||
| "epoch 2: train loss = 0.8734584440939553, train acc = 0.505408429690414,\n", | |||
| "val_loss = 0.6706514441689779, val_acc = 0.6046511627906976\n", | |||
| "\n", | |||
| "epoch: 3\n", | |||
| "epoch 3: train loss = 0.8688026436315193, train acc = 0.5210742260350616,\n", | |||
| "val_loss = 0.6759761059006979, val_acc = 0.5697674418604651\n", | |||
| "\n", | |||
| "epoch: 4\n", | |||
| "epoch 4: train loss = 0.8661403424790527, train acc = 0.5203282357329355,\n", | |||
| "val_loss = 0.6691561743270519, val_acc = 0.5872093023255814\n", | |||
| "\n", | |||
| "epoch: 5\n", | |||
| "epoch 5: train loss = 0.8571998774227212, train acc = 0.5389779932860873,\n", | |||
| "val_loss = 0.6676994409672049, val_acc = 0.5872093023255814\n", | |||
| "\n", | |||
| "epoch: 6\n", | |||
| "epoch 6: train loss = 0.8471142522704463, train acc = 0.5479298769116001,\n", | |||
| "val_loss = 0.6665740276491919, val_acc = 0.5872093023255814\n", | |||
| "\n", | |||
| "epoch: 7\n", | |||
| "epoch 7: train loss = 0.841995612025839, train acc = 0.5557627750839239,\n", | |||
| "val_loss = 0.6650435148283492, val_acc = 0.6162790697674418\n", | |||
| "\n", | |||
| "epoch: 8\n", | |||
| "epoch 8: train loss = 0.8332126938065056, train acc = 0.5747855277881387,\n", | |||
| "val_loss = 0.6654224465059679, val_acc = 0.6162790697674418\n", | |||
| "\n", | |||
| "epoch: 9\n", | |||
| "epoch 9: train loss = 0.828857630791392, train acc = 0.5863483774710929,\n", | |||
| "val_loss = 0.6667825177658436, val_acc = 0.6046511627906976\n", | |||
| "\n", | |||
| "epoch: 10\n", | |||
| "epoch 10: train loss = 0.8170930889727953, train acc = 0.6094740768370012,\n", | |||
| "val_loss = 0.662314846072086, val_acc = 0.6104651162790697\n", | |||
| "\n", | |||
| "epoch: 11\n", | |||
| "epoch 11: train loss = 0.8065087129401876, train acc = 0.6258858634837747,\n", | |||
| "val_loss = 0.6654108665710272, val_acc = 0.5755813953488372\n", | |||
| "\n", | |||
| "epoch: 12\n", | |||
| "epoch 12: train loss = 0.7962307475787942, train acc = 0.6478925773964939,\n", | |||
| "val_loss = 0.6616917931756308, val_acc = 0.5813953488372093\n", | |||
| "\n", | |||
| "epoch: 13\n", | |||
| "epoch 13: train loss = 0.776722994525679, train acc = 0.6833271167474823,\n", | |||
| "val_loss = 0.6591206082077914, val_acc = 0.5872093023255814\n", | |||
| "\n", | |||
| "epoch: 14\n", | |||
| "epoch 14: train loss = 0.7678748263836085, train acc = 0.701603879149571,\n", | |||
| "val_loss = 0.6578961167224618, val_acc = 0.6104651162790697\n", | |||
| "\n", | |||
| "epoch: 15\n", | |||
| "epoch 15: train loss = 0.7510278017295914, train acc = 0.7135397239835882,\n", | |||
| "val_loss = 0.6544989874196607, val_acc = 0.5988372093023255\n", | |||
| "\n", | |||
| "epoch: 16\n", | |||
| "validation loss decreased (0.646471 ---> 0.642755), val_acc = 0.6104651162790697\n", | |||
| "epoch 16: train loss = 0.7301953062776397, train acc = 0.7601641178664678,\n", | |||
| "val_loss = 0.6427546046500983, val_acc = 0.6104651162790697\n", | |||
| "\n", | |||
| "epoch: 17\n", | |||
| "validation loss decreased (0.642755 ---> 0.635279), val_acc = 0.6627906976744186\n", | |||
| "epoch 17: train loss = 0.7135588408227911, train acc = 0.7859007832898173,\n", | |||
| "val_loss = 0.6352790053500685, val_acc = 0.6627906976744186\n", | |||
| "\n", | |||
| "epoch: 18\n", | |||
| "validation loss decreased (0.635279 ---> 0.631912), val_acc = 0.6395348837209303\n", | |||
| "epoch 18: train loss = 0.6874780969493471, train acc = 0.8157403953748601,\n", | |||
| "val_loss = 0.6319117740143178, val_acc = 0.6395348837209303\n", | |||
| "\n", | |||
| "epoch: 19\n", | |||
| "validation loss decreased (0.631912 ---> 0.623324), val_acc = 0.6627906976744186\n", | |||
| "epoch 19: train loss = 0.6639259783290563, train acc = 0.8489369638194704,\n", | |||
| "val_loss = 0.6233235237210296, val_acc = 0.6627906976744186\n", | |||
| "\n", | |||
| "epoch: 20\n", | |||
| "validation loss decreased (0.623324 ---> 0.621211), val_acc = 0.6686046511627907\n", | |||
| "epoch 20: train loss = 0.6353608048793674, train acc = 0.8776575904513242,\n", | |||
| "val_loss = 0.6212111226347989, val_acc = 0.6686046511627907\n", | |||
| "\n", | |||
| "epoch: 21\n", | |||
| "validation loss decreased (0.621211 ---> 0.620210), val_acc = 0.6627906976744186\n", | |||
| "epoch 21: train loss = 0.6062298955778629, train acc = 0.8955613577023499,\n", | |||
| "val_loss = 0.6202103772828745, val_acc = 0.6627906976744186\n", | |||
| "\n", | |||
| "epoch: 22\n", | |||
| "validation loss decreased (0.620210 ---> 0.578789), val_acc = 0.7267441860465116\n", | |||
| "epoch 22: train loss = 0.5769774110314563, train acc = 0.9089891831406192,\n", | |||
| "val_loss = 0.5787890664366788, val_acc = 0.7267441860465116\n", | |||
| "\n", | |||
| "epoch: 23\n", | |||
| "epoch 23: train loss = 0.5446096906151535, train acc = 0.9365908243192839,\n", | |||
| "val_loss = 0.58748683818551, val_acc = 0.7267441860465116\n", | |||
| "\n", | |||
| "epoch: 24\n", | |||
| "epoch 24: train loss = 0.5065792173602962, train acc = 0.9470346885490488,\n", | |||
| "val_loss = 0.6247755801954935, val_acc = 0.6395348837209303\n", | |||
| "\n", | |||
| "epoch: 25\n", | |||
| "validation loss decreased (0.578789 ---> 0.532145), val_acc = 0.7790697674418605\n", | |||
| "epoch 25: train loss = 0.47399600875639997, train acc = 0.9593435285341291,\n", | |||
| "val_loss = 0.5321454031522884, val_acc = 0.7790697674418605\n", | |||
| "\n", | |||
| "epoch: 26\n", | |||
| "epoch 26: train loss = 0.4397122574603989, train acc = 0.9668034315553897,\n", | |||
| "val_loss = 0.5539705656295599, val_acc = 0.7674418604651163\n", | |||
| "\n", | |||
| "epoch: 27\n", | |||
| "epoch 27: train loss = 0.4094221261689486, train acc = 0.9701603879149571,\n", | |||
| "val_loss = 0.6161841694698778, val_acc = 0.686046511627907\n", | |||
| "\n", | |||
| "epoch: 28\n", | |||
| "epoch 28: train loss = 0.3771897173559252, train acc = 0.9802312569936591,\n", | |||
| "val_loss = 0.5943776341371758, val_acc = 0.7383720930232558\n", | |||
| "\n", | |||
| "epoch: 29\n", | |||
| "epoch 29: train loss = 0.35380360624186363, train acc = 0.9832152182021634,\n", | |||
| "val_loss = 0.5820831060409546, val_acc = 0.7383720930232558\n", | |||
| "\n", | |||
| "epoch: 30\n", | |||
| "epoch 30: train loss = 0.3256017004140764, train acc = 0.9891831406191719,\n", | |||
| "val_loss = 0.642474444799645, val_acc = 0.7034883720930233\n", | |||
| "\n", | |||
| "epoch: 31\n", | |||
| "epoch 31: train loss = 0.3058795078238281, train acc = 0.990302126072361,\n", | |||
| "val_loss = 0.5841574142145556, val_acc = 0.7732558139534884\n", | |||
| "\n", | |||
| "epoch: 32\n", | |||
| "epoch 32: train loss = 0.28646321554141274, train acc = 0.9962700484893696,\n", | |||
| "val_loss = 0.6434207239816355, val_acc = 0.7325581395348837\n", | |||
| "\n", | |||
| "epoch: 33\n", | |||
| "epoch 33: train loss = 0.26851461289178874, train acc = 0.9947780678851175,\n", | |||
| "val_loss = 0.6213336531506028, val_acc = 0.7558139534883721\n", | |||
| "\n", | |||
| "epoch: 34\n", | |||
| "epoch 34: train loss = 0.2543404344545732, train acc = 0.9977620290936218,\n", | |||
| "val_loss = 0.6432186337404473, val_acc = 0.75\n", | |||
| "\n", | |||
| "epoch: 35\n", | |||
| "epoch 35: train loss = 0.24356636835740866, train acc = 0.9970160387914957,\n", | |||
| "val_loss = 0.6490278299464736, val_acc = 0.7732558139534884\n", | |||
| "\n", | |||
| "epoch: 36\n", | |||
| "epoch 36: train loss = 0.2339746813105363, train acc = 0.999627004848937,\n", | |||
| "val_loss = 0.6225385125293288, val_acc = 0.7558139534883721\n", | |||
| "\n", | |||
| "epoch: 37\n", | |||
| "epoch 37: train loss = 0.22574142918285262, train acc = 1.0,\n", | |||
| "val_loss = 0.6539836512055508, val_acc = 0.7616279069767442\n", | |||
| "\n", | |||
| "!!! overfitted !!!\n", | |||
| "[1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0]\n", | |||
| "[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1]\n", | |||
| "early stoping results:\n", | |||
| "\t 0.7760416666666666\n", | |||
| "\t 0.9671764267064528\n", | |||
| "[1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1]\n", | |||
| "[1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1]\n", | |||
| "full train results:\n", | |||
| "\t 0.7604166666666666\n", | |||
| "\t 0.999627004848937\n", | |||
| "------------fold 2-----------\n", | |||
| "[ 283 1266]\n", | |||
| "0.47221186124580383\n", | |||
| "data shape = (1913, 7, 9, 20, 11)\n", | |||
| "train shape = 2681\n", | |||
| "validation shape = 172\n", | |||
| "test shape = 192\n", | |||
| "calculating total steps...\n" | |||
| ] | |||
| }, | |||
| { | |||
| "ename": "KeyboardInterrupt", | |||
| "evalue": "", | |||
| "output_type": "error", | |||
| "traceback": [ | |||
| "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", | |||
| "\u001b[1;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", | |||
| "Input \u001b[1;32mIn [47]\u001b[0m, in \u001b[0;36m<cell line: 4>\u001b[1;34m()\u001b[0m\n\u001b[0;32m 12\u001b[0m test_loader \u001b[38;5;241m=\u001b[39m torch\u001b[38;5;241m.\u001b[39mutils\u001b[38;5;241m.\u001b[39mdata\u001b[38;5;241m.\u001b[39mDataLoader(test, batch_size\u001b[38;5;241m=\u001b[39mbatch_size, shuffle\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m)\n\u001b[0;32m 14\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mcalculating total steps...\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[1;32m---> 15\u001b[0m steps \u001b[38;5;241m=\u001b[39m \u001b[43mcalculate_steps\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtrain_loader\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mn_epochs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 16\u001b[0m train_model(train_loader, val_loader, epochs\u001b[38;5;241m=\u001b[39mn_epochs, lr\u001b[38;5;241m=\u001b[39mlr, fold\u001b[38;5;241m=\u001b[39mfold, steps\u001b[38;5;241m=\u001b[39msteps)\n\u001b[0;32m 17\u001b[0m evaluate_model(test_loader, fold\u001b[38;5;241m=\u001b[39mfold)\n", | |||
| "Input \u001b[1;32mIn [11]\u001b[0m, in \u001b[0;36mcalculate_steps\u001b[1;34m(train_loader, epochs)\u001b[0m\n\u001b[0;32m 2\u001b[0m steps \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m0\u001b[39m\n\u001b[0;32m 3\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m epoch \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mrange\u001b[39m(epochs):\n\u001b[1;32m----> 4\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m data, label \u001b[38;5;129;01min\u001b[39;00m train_loader:\n\u001b[0;32m 5\u001b[0m steps \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;241m1\u001b[39m\n\u001b[0;32m 6\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m steps\n", | |||
| "File \u001b[1;32m~\\Desktop\\Master\\bci\\lib\\site-packages\\torch\\utils\\data\\dataloader.py:677\u001b[0m, in \u001b[0;36m_BaseDataLoaderIter.__next__\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 676\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m__next__\u001b[39m(\u001b[38;5;28mself\u001b[39m) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m Any:\n\u001b[1;32m--> 677\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[43mtorch\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mautograd\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mprofiler\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrecord_function\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_profile_name\u001b[49m\u001b[43m)\u001b[49m:\n\u001b[0;32m 678\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_sampler_iter \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m 679\u001b[0m \u001b[38;5;66;03m# TODO(https://github.com/pytorch/pytorch/issues/76750)\u001b[39;00m\n\u001b[0;32m 680\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_reset() \u001b[38;5;66;03m# type: ignore[call-arg]\u001b[39;00m\n", | |||
| "File \u001b[1;32m~\\Desktop\\Master\\bci\\lib\\site-packages\\torch\\autograd\\profiler.py:443\u001b[0m, in \u001b[0;36mrecord_function.__init__\u001b[1;34m(self, name, args)\u001b[0m\n\u001b[0;32m 440\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mrun_callbacks_on_exit: \u001b[38;5;28mbool\u001b[39m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n\u001b[0;32m 441\u001b[0m \u001b[38;5;66;03m# Stores underlying RecordFunction as a tensor. TODO: move to custom\u001b[39;00m\n\u001b[0;32m 442\u001b[0m \u001b[38;5;66;03m# class (https://github.com/pytorch/pytorch/issues/35026).\u001b[39;00m\n\u001b[1;32m--> 443\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhandle: torch\u001b[38;5;241m.\u001b[39mTensor \u001b[38;5;241m=\u001b[39m \u001b[43mtorch\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mzeros\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m)\u001b[49m\n", | |||
| "\u001b[1;31mKeyboardInterrupt\u001b[0m: " | |||
| ] | |||
| } | |||
| ], | |||
| "source": [ | |||
| "dataset = Dataset(all_data, vowel_label)\n", | |||
| "data = dataset.picturize()\n", | |||
| "\n", | |||
| "for fold, (train_idx, test_idx) in enumerate(skf.split(data, labels)):\n", | |||
| " print('------------fold {}-----------'.format(fold))\n", | |||
| " train, val, test = dataset.split(train_idx, test_idx)\n", | |||
| " train_label = [item[1] for item in train]\n", | |||
| " print(sum(train_label)/len(train_label))\n", | |||
| " dataset.show()\n", | |||
| " train_loader = torch.utils.data.DataLoader(train, batch_size=batch_size, shuffle=True)\n", | |||
| " val_loader = torch.utils.data.DataLoader(val, batch_size=batch_size, shuffle=True)\n", | |||
| " test_loader = torch.utils.data.DataLoader(test, batch_size=batch_size, shuffle=True)\n", | |||
| " \n", | |||
| " print('calculating total steps...')\n", | |||
| " steps = calculate_steps(train_loader, n_epochs)\n", | |||
| " train_model(train_loader, val_loader, epochs=n_epochs, lr=lr, fold=fold, steps=steps)\n", | |||
| " evaluate_model(test_loader, fold=fold)" | |||
| ] | |||
| }, | |||
| { | |||
| "cell_type": "code", | |||
| "execution_count": null, | |||
| "id": "4d614e0a", | |||
| "metadata": {}, | |||
| "outputs": [], | |||
| "source": [] | |||
| } | |||
| ], | |||
| "metadata": { | |||
| "kernelspec": { | |||
| "display_name": "Python 3 (ipykernel)", | |||
| "language": "python", | |||
| "name": "python3" | |||
| }, | |||
| "language_info": { | |||
| "codemirror_mode": { | |||
| "name": "ipython", | |||
| "version": 3 | |||
| }, | |||
| "file_extension": ".py", | |||
| "mimetype": "text/x-python", | |||
| "name": "python", | |||
| "nbconvert_exporter": "python", | |||
| "pygments_lexer": "ipython3", | |||
| "version": "3.9.7" | |||
| } | |||
| }, | |||
| "nbformat": 4, | |||
| "nbformat_minor": 5 | |||
| } | |||