123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180 |
- import torch
- import torch.nn as nn
- import torchvision.models as models
-
- from models.modules import LCA,ASM,GCM_up,GCM,CrossNonLocalBlock
-
-
- class ConvBlock(nn.Module):
- def __init__(self, in_channels, out_channels, kernel_size, stride, padding):
- super(ConvBlock, self).__init__()
- self.conv = nn.Conv2d(in_channels, out_channels,
- kernel_size=kernel_size,
- stride=stride,
- padding=padding)
- self.bn = nn.BatchNorm2d(out_channels)
- self.relu = nn.ReLU(inplace=True)
-
- def forward(self, x):
- x = self.conv(x)
- x = self.bn(x)
- x = self.relu(x)
- return x
-
-
- class DecoderBlock(nn.Module):
- def __init__(self, in_channels, out_channels,
- kernel_size=3, stride=1, padding=1):
- super(DecoderBlock, self).__init__()
-
- self.conv1 = ConvBlock(in_channels, in_channels // 4, kernel_size=kernel_size,
- stride=stride, padding=padding)
-
- self.conv2 = ConvBlock(in_channels // 4, out_channels, kernel_size=kernel_size,
- stride=stride, padding=padding)
-
- self.upsample = nn.Upsample(scale_factor=2, mode='bilinear')
-
- def forward(self, x):
- x = self.conv1(x)
- x = self.conv2(x)
- x = self.upsample(x)
- return x
-
-
- class SideoutBlock(nn.Module):
- def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1):
- super(SideoutBlock, self).__init__()
-
- self.conv1 = ConvBlock(in_channels, in_channels // 4, kernel_size=kernel_size,
- stride=stride, padding=padding)
-
- self.dropout = nn.Dropout2d(0.1)
-
- self.conv2 = nn.Conv2d(in_channels // 4, out_channels, 1)
-
- def forward(self, x):
- x = self.conv1(x)
- x = self.dropout(x)
- x = self.conv2(x)
-
- return x
-
-
- class EuNet(nn.Module):
- def __init__(self, num_classes):
- super(ACSNet, self).__init__()
-
- resnet = models.resnet34(pretrained=True)
-
- # Encoder
- self.encoder1_conv = resnet.conv1
- self.encoder1_bn = resnet.bn1
- self.encoder1_relu = resnet.relu
- self.maxpool = resnet.maxpool
- self.encoder2 = resnet.layer1
- self.encoder3 = resnet.layer2
- self.encoder4 = resnet.layer3
- self.encoder5 = resnet.layer4
-
-
- # Decoder
- self.decoder5 = DecoderBlock(in_channels=512, out_channels=512)
- self.decoder4 = DecoderBlock(in_channels=1024, out_channels=256)
- self.decoder3 = DecoderBlock(in_channels=512, out_channels=128)
- self.decoder2 = DecoderBlock(in_channels=256, out_channels=64)
- self.decoder1 = DecoderBlock(in_channels=192, out_channels=64)
-
- self.outconv = nn.Sequential(ConvBlock(64, 32, kernel_size=3, stride=1, padding=1),
- nn.Dropout2d(0.1),
- nn.Conv2d(32, num_classes, 1))
-
- self.outenc = ConvBlock(512,256,kernel_size=1, stride=1,padding=0)
-
- # Sideout
- self.sideout2 = SideoutBlock(64, 1)
- self.sideout3 = SideoutBlock(128, 1)
- self.sideout4 = SideoutBlock(256, 1)
- self.sideout5 = SideoutBlock(512, 1)
-
-
-
- # global context module
- self.gcm_up = GCM_up(256,64)
- self.gcm_e5 = GCM_up(256, 256)#3
-
- self.gcm_e4 = GCM_up(256, 128)#2
- self.gcm_e3 = GCM_up(256, 64)#1
- self.gcm_e2 = GCM_up(256, 64)#0
-
-
- # adaptive selection module
- self.asm4 = ASM(512, 1024)
- self.asm3 = ASM(256, 512)
- self.asm2 = ASM(128, 256)
- self.asm1 = ASM(64, 192)
-
- self.up1 = nn.Upsample(scale_factor=2, mode='bilinear')
- self.up2 = nn.Upsample(scale_factor=4, mode='bilinear')
- self.up3 = nn.Upsample(scale_factor=8, mode='bilinear')
- self.up4 = nn.Upsample(scale_factor=16, mode='bilinear')
-
- self.lca_cross_1 = CrossNonLocalBlock(512,256,256)
- self.lca_cross_2 = CrossNonLocalBlock(1024,128,128)
- self.lca_cross_3 = CrossNonLocalBlock(512,64,64)
- self.lca_cross_4 = CrossNonLocalBlock(256,64,64)
-
- def forward(self, x):
- e1 = self.encoder1_conv(x)
- e1 = self.encoder1_bn(e1)
- e1 = self.encoder1_relu(e1)
- e1_pool = self.maxpool(e1)
- e2 = self.encoder2(e1_pool)
- e3 = self.encoder3(e2)
- e4 = self.encoder4(e3)
- e5 = self.encoder5(e4)
- e_ex = self.outenc(e5)
-
- global_contexts_up = self.gcm_up(e_ex)
-
-
- d5 = self.decoder5(e5)
- out5 = self.sideout5(d5)
- lc4 = self.lca_cross_1(d5,e4)
- gc4 = self.gcm_e5(e_ex)
- gc4 = self.up1(gc4)
-
-
- comb4 = self.asm4(lc4, d5, gc4)
-
- d4 = self.decoder4(comb4)
- out4 = self.sideout4(d4)
- lc3 = self.lca_cross_2(comb4,e3)
- gc3 = self.gcm_e4(e_ex)
- gc3 = self.up2(gc3)
-
-
- comb3 = self.asm3(lc3, d4, gc3)
-
-
- d3 = self.decoder3(comb3)
- out3 = self.sideout3(d3)
- lc2= self.lca_cross_3(comb3,e2)
- gc2 = self.gcm_e3(e_ex)
- gc2 = self.up3(gc2)
-
- comb2 = self.asm2(lc2, d3, gc2)
-
- d2 = self.decoder2(comb2)
- out2 = self.sideout2(d2)
- lc1 = self.lca_cross_4(comb2,e1)
- gc1 = self.gcm_e2(e_ex)
- gc1 = self.up4(gc1)
-
- comb1 = self.asm1(lc1, d2, gc1)
-
- d1 = self.decoder1(comb1
- out1 = self.outconv(d1)
-
- return torch.sigmoid(out1), torch.sigmoid(out2), torch.sigmoid(out3), \
- torch.sigmoid(out4), torch.sigmoid(out5)
|