import torch class SAM(torch.optim.Optimizer): def __init__(self, params, base_optimizer, rho=0.05, adaptive=False, **kwargs): assert rho >= 0.0, f"Invalid rho, should be non-negative: {rho}" defaults = dict(rho=rho, adaptive=adaptive, **kwargs) super(SAM, self).__init__(params, defaults) self.base_optimizer = base_optimizer(self.param_groups, **kwargs) self.param_groups = self.base_optimizer.param_groups @torch.no_grad() def first_step(self, zero_grad=False): grad_norm = self._grad_norm() for group in self.param_groups: scale = group["rho"] / (grad_norm + 1e-12) for p in group["params"]: if p.grad is None: continue self.state[p]["old_p"] = p.data.clone() e_w = (torch.pow(p, 2) if group["adaptive"] else 1.0) * p.grad * scale.to(p) p.add_(e_w) # climb to the local maximum "w + e(w)" if zero_grad: self.zero_grad() @torch.no_grad() def second_step(self, zero_grad=False): for group in self.param_groups: for p in group["params"]: if p.grad is None: continue p.data = self.state[p]["old_p"] # get back to "w" from "w + e(w)" self.base_optimizer.step() # do the actual "sharpness-aware" update if zero_grad: self.zero_grad() @torch.no_grad() def step(self, closure=None): assert closure is not None, "Sharpness Aware Minimization requires closure, but it was not provided" closure = torch.enable_grad()(closure) # the closure should do a full forward-backward pass self.first_step(zero_grad=True) closure() self.second_step() def _grad_norm(self): shared_device = self.param_groups[0]["params"][0].device # put everything on the same device, in case of model parallelism norm = torch.norm( torch.stack([ ((torch.abs(p) if group["adaptive"] else 1.0) * p.grad).norm(p=2).to(shared_device) for group in self.param_groups for p in group["params"] if p.grad is not None ]), p=2 ) return norm def load_state_dict(self, state_dict): super().load_state_dict(state_dict) self.base_optimizer.param_groups = self.param_groups