|
|
|
|
|
|
|
|
piazche[i][v-1] = 1 |
|
|
piazche[i][v-1] = 1 |
|
|
return piazche |
|
|
return piazche |
|
|
|
|
|
|
|
|
def remove_random_node(graph, max_size=40, min_size=10): |
|
|
|
|
|
''' |
|
|
|
|
|
removes a random node from the gragh |
|
|
|
|
|
returns the remaining graph matrix and the removed node links |
|
|
|
|
|
''' |
|
|
|
|
|
if len(graph.nodes()) >= max_size or len(graph.nodes()) < min_size: |
|
|
|
|
|
return None |
|
|
|
|
|
relabeled_graph = nx.relabel.convert_node_labels_to_integers(graph) |
|
|
|
|
|
choice = np.random.choice(list(relabeled_graph.nodes())) |
|
|
|
|
|
remaining_graph = nx.to_numpy_matrix(relabeled_graph.subgraph(filter(lambda x: x != choice, list(relabeled_graph.nodes())))) |
|
|
|
|
|
removed_node = nx.to_numpy_matrix(relabeled_graph)[choice] |
|
|
|
|
|
graph_length = len(remaining_graph) |
|
|
|
|
|
# source_graph = np.pad(remaining_graph, [(0, max_size - graph_length), (0, max_size - graph_length)]) |
|
|
|
|
|
# target_graph = np.copy(source_graph) |
|
|
|
|
|
removed_node_row = np.asarray(removed_node)[0] |
|
|
|
|
|
# target_graph[graph_length] = np.pad(removed_node_row, [(0, max_size - len(removed_node_row))]) |
|
|
|
|
|
return remaining_graph, removed_node_row |
|
|
|
|
|
|
|
|
# def remove_random_node(graph, max_size=40, min_size=10): |
|
|
|
|
|
# ''' |
|
|
|
|
|
# removes a random node from the gragh |
|
|
|
|
|
# returns the remaining graph matrix and the removed node links |
|
|
|
|
|
# ''' |
|
|
|
|
|
# if len(graph.nodes()) >= max_size or len(graph.nodes()) < min_size: |
|
|
|
|
|
# return None |
|
|
|
|
|
# relabeled_graph = nx.relabel.convert_node_labels_to_integers(graph) |
|
|
|
|
|
# choice = np.random.choice(list(relabeled_graph.nodes())) |
|
|
|
|
|
# remaining_graph = nx.to_numpy_matrix(relabeled_graph.subgraph(filter(lambda x: x != choice, list(relabeled_graph.nodes())))) |
|
|
|
|
|
# removed_node = nx.to_numpy_matrix(relabeled_graph)[choice] |
|
|
|
|
|
# graph_length = len(remaining_graph) |
|
|
|
|
|
# # source_graph = np.pad(remaining_graph, [(0, max_size - graph_length), (0, max_size - graph_length)]) |
|
|
|
|
|
# # target_graph = np.copy(source_graph) |
|
|
|
|
|
# removed_node_row = np.asarray(removed_node)[0] |
|
|
|
|
|
# # target_graph[graph_length] = np.pad(removed_node_row, [(0, max_size - len(removed_node_row))]) |
|
|
|
|
|
# return remaining_graph, removed_node_row |
|
|
|
|
|
|
|
|
|
|
|
def prepare_graph_data(graph, max_size=40, min_size=10): |
|
|
|
|
|
''' |
|
|
|
|
|
gets a graph as an input |
|
|
|
|
|
returns a graph with a randomly removed node adj matrix [0], its feature matrix [0], the removed node true links [2] |
|
|
|
|
|
''' |
|
|
|
|
|
if len(graph.nodes()) >= max_size or len(graph.nodes()) < min_size: |
|
|
|
|
|
return None |
|
|
|
|
|
relabeled_graph = nx.relabel.convert_node_labels_to_integers(graph) |
|
|
|
|
|
choice = np.random.choice(list(relabeled_graph.nodes())) |
|
|
|
|
|
remaining_graph = relabeled_graph.subgraph(filter(lambda x: x != choice, list(relabeled_graph.nodes()))) |
|
|
|
|
|
remaining_graph_adj = nx.to_numpy_matrix(remaining_graph) |
|
|
|
|
|
removed_node = nx.to_numpy_matrix(relabeled_graph)[choice] |
|
|
|
|
|
removed_node_row = np.asarray(removed_node)[0] |
|
|
|
|
|
return remaining_graph_adj, feature_matrix(remaining_graph), removed_node_row |
|
|
|
|
|
|
|
|
"""" |
|
|
"""" |
|
|
Layers: |
|
|
Layers: |
|
|
|
|
|
|
|
|
scores = attention(query, key, value, self.key_dim) |
|
|
scores = attention(query, key, value, self.key_dim) |
|
|
concat = scores.transpose(1,2).contiguous().view(bs, -1, self.model_dim) |
|
|
concat = scores.transpose(1,2).contiguous().view(bs, -1, self.model_dim) |
|
|
output = self.out(concat) |
|
|
output = self.out(concat) |
|
|
|
|
|
output = output.view(bs, self.model_dim) |
|
|
|
|
|
|
|
|
return output |
|
|
return output |