12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485 |
- import torch
- import torch.nn as nn
-
- class WD_GCN(nn.Module):
- def __init__(self, A, X, edges, hidden_feat=[2, 2]):
- super(WD_GCN, self).__init__()
- self.device = 1
- self.A = A
- self.X = X
- self.T, self.N = X.shape[0], X.shape[1] # T = number of nodes, N = number of node features
- self.v = torch.cuda.FloatTensor([self.N, 1])
- self.edge_src_nodes = torch.matmul(edges[[0, 1]].transpose(1, 0).float(), self.v).cuda()
- self.edge_trg_nodes = torch.matmul(edges[[0, 2]].transpose(1, 0).float(), self.v).cuda()
- self.tanh = torch.nn.Tanh()
- self.sigmoid = torch.nn.Sigmoid()
- self.relu = torch.nn.ReLU(inplace=False)
- self.AX = self.compute_AX(A, X)
-
- # GCN parameters
- self.W = nn.Parameter(torch.randn(X.shape[-1], hidden_feat[0]).cuda())
-
- # Edge classification/link prediction parameters
- self.U = torch.randn(2*hidden_feat[0], hidden_feat[1]).cuda()
-
-
- # LSTM parameters
- self.Wf = nn.Parameter(torch.randn(hidden_feat[0], hidden_feat[0]).cuda())
- self.Wj = nn.Parameter(torch.randn(hidden_feat[0], hidden_feat[0]).cuda())
- self.Wc = nn.Parameter(torch.randn(hidden_feat[0], hidden_feat[0]).cuda())
- self.Wo = nn.Parameter(torch.randn(hidden_feat[0], hidden_feat[0]).cuda())
- self.Uf = nn.Parameter(torch.randn(hidden_feat[0], hidden_feat[0]).cuda())
- self.Uj = nn.Parameter(torch.randn(hidden_feat[0], hidden_feat[0]).cuda())
- self.Uc = nn.Parameter(torch.randn(hidden_feat[0], hidden_feat[0]).cuda())
- self.Uo = nn.Parameter(torch.randn(hidden_feat[0], hidden_feat[0]).cuda())
- self.bf = nn.Parameter(torch.randn(hidden_feat[0]).cuda())
- self.bj = nn.Parameter(torch.randn(hidden_feat[0]).cuda())
- self.bc = nn.Parameter(torch.randn(hidden_feat[0]).cuda())
- self.bo = nn.Parameter(torch.randn(hidden_feat[0]).cuda())
- self.h_init = torch.randn(hidden_feat[0]).cuda()
- self.c_init = torch.randn(hidden_feat[0]).cuda()
-
-
- def __call__(self, A=None, X=None, edges=None):
- return self.forward(A, X, edges)
-
- def forward(self, A=None, X=None, edges=None):
- if type(A) == list:
- AX = self.compute_AX(A, X)
- edge_src_nodes = torch.matmul(edges[[0, 1]].transpose(1, 0).float(), self.v)
- edge_trg_nodes = torch.matmul(edges[[0, 2]].transpose(1, 0).float(), self.v)
- else:
- AX = self.AX
- edge_src_nodes = self.edge_src_nodes
- edge_trg_nodes = self.edge_trg_nodes
-
- Y = self.relu(torch.matmul(AX.cuda(), self.W.cuda()))
- Z = self.LSTM(Y)
- Z_mat_edge_src_nodes = Z.reshape(-1, Z.shape[-1])[edge_src_nodes.long()]
- Z_mat_edge_trg_nodes = Z.reshape(-1, Z.shape[-1])[edge_trg_nodes.long()]
- Z_mat = torch.cat((Z_mat_edge_src_nodes, Z_mat_edge_trg_nodes), dim=1).cuda()
- output = torch.matmul(Z_mat, self.U) # this is for prediction head
-
- return output
-
- def compute_AX(self, A, X):
- AX = torch.zeros(self.T, self.N, X.shape[-1]).cuda()
- for k in range(len(A)):
- AX[k] = torch.sparse.mm(A[k].cuda(), X[k])
-
- return AX
-
- def LSTM(self, Y):
- c = self.c_init.repeat(self.N, 1)
- h = self.h_init.repeat(self.N, 1)
- Z = torch.zeros(Y.shape)
- for time in range(Y.shape[0]):
- f = self.sigmoid(torch.matmul(Y[time], self.Wf) + torch.matmul(h, self.Uf) + self.bf.repeat(self.N, 1))
- j = self.sigmoid(torch.matmul(Y[time], self.Wj) + torch.matmul(h, self.Uj) + self.bj.repeat(self.N, 1))
- o = self.sigmoid(torch.matmul(Y[time], self.Wo) + torch.matmul(h, self.Uo) + self.bo.repeat(self.N, 1))
- ct = self.sigmoid(torch.matmul(Y[time], self.Wc) + torch.matmul(h, self.Uc) + self.bc.repeat(self.N, 1))
- c = j * ct + f * c
- h = o * self.tanh(c)
- Z[time] = h
-
- return Z
|