| @@ -0,0 +1,85 @@ | |||
| import torch | |||
| import torch.nn as nn | |||
| class WD_GCN(nn.Module): | |||
| def __init__(self, A, X, edges, hidden_feat=[2, 2]): | |||
| super(WD_GCN, self).__init__() | |||
| self.device = 1 | |||
| self.A = A | |||
| self.X = X | |||
| self.T, self.N = X.shape[0], X.shape[1] # T = number of nodes, N = number of node features | |||
| self.v = torch.cuda.FloatTensor([self.N, 1]) | |||
| self.edge_src_nodes = torch.matmul(edges[[0, 1]].transpose(1, 0).float(), self.v).cuda() | |||
| self.edge_trg_nodes = torch.matmul(edges[[0, 2]].transpose(1, 0).float(), self.v).cuda() | |||
| self.tanh = torch.nn.Tanh() | |||
| self.sigmoid = torch.nn.Sigmoid() | |||
| self.relu = torch.nn.ReLU(inplace=False) | |||
| self.AX = self.compute_AX(A, X) | |||
| # GCN parameters | |||
| self.W = nn.Parameter(torch.randn(X.shape[-1], hidden_feat[0]).cuda()) | |||
| # Edge classification/link prediction parameters | |||
| self.U = torch.randn(2*hidden_feat[0], hidden_feat[1]).cuda() | |||
| # LSTM parameters | |||
| self.Wf = nn.Parameter(torch.randn(hidden_feat[0], hidden_feat[0]).cuda()) | |||
| self.Wj = nn.Parameter(torch.randn(hidden_feat[0], hidden_feat[0]).cuda()) | |||
| self.Wc = nn.Parameter(torch.randn(hidden_feat[0], hidden_feat[0]).cuda()) | |||
| self.Wo = nn.Parameter(torch.randn(hidden_feat[0], hidden_feat[0]).cuda()) | |||
| self.Uf = nn.Parameter(torch.randn(hidden_feat[0], hidden_feat[0]).cuda()) | |||
| self.Uj = nn.Parameter(torch.randn(hidden_feat[0], hidden_feat[0]).cuda()) | |||
| self.Uc = nn.Parameter(torch.randn(hidden_feat[0], hidden_feat[0]).cuda()) | |||
| self.Uo = nn.Parameter(torch.randn(hidden_feat[0], hidden_feat[0]).cuda()) | |||
| self.bf = nn.Parameter(torch.randn(hidden_feat[0]).cuda()) | |||
| self.bj = nn.Parameter(torch.randn(hidden_feat[0]).cuda()) | |||
| self.bc = nn.Parameter(torch.randn(hidden_feat[0]).cuda()) | |||
| self.bo = nn.Parameter(torch.randn(hidden_feat[0]).cuda()) | |||
| self.h_init = torch.randn(hidden_feat[0]).cuda() | |||
| self.c_init = torch.randn(hidden_feat[0]).cuda() | |||
| def __call__(self, A=None, X=None, edges=None): | |||
| return self.forward(A, X, edges) | |||
| def forward(self, A=None, X=None, edges=None): | |||
| if type(A) == list: | |||
| AX = self.compute_AX(A, X) | |||
| edge_src_nodes = torch.matmul(edges[[0, 1]].transpose(1, 0).float(), self.v) | |||
| edge_trg_nodes = torch.matmul(edges[[0, 2]].transpose(1, 0).float(), self.v) | |||
| else: | |||
| AX = self.AX | |||
| edge_src_nodes = self.edge_src_nodes | |||
| edge_trg_nodes = self.edge_trg_nodes | |||
| Y = self.relu(torch.matmul(AX.cuda(), self.W.cuda())) | |||
| Z = self.LSTM(Y) | |||
| Z_mat_edge_src_nodes = Z.reshape(-1, Z.shape[-1])[edge_src_nodes.long()] | |||
| Z_mat_edge_trg_nodes = Z.reshape(-1, Z.shape[-1])[edge_trg_nodes.long()] | |||
| Z_mat = torch.cat((Z_mat_edge_src_nodes, Z_mat_edge_trg_nodes), dim=1).cuda() | |||
| output = torch.matmul(Z_mat, self.U) # this is for prediction head | |||
| return output | |||
| def compute_AX(self, A, X): | |||
| AX = torch.zeros(self.T, self.N, X.shape[-1]).cuda() | |||
| for k in range(len(A)): | |||
| AX[k] = torch.sparse.mm(A[k].cuda(), X[k]) | |||
| return AX | |||
| def LSTM(self, Y): | |||
| c = self.c_init.repeat(self.N, 1) | |||
| h = self.h_init.repeat(self.N, 1) | |||
| Z = torch.zeros(Y.shape) | |||
| for time in range(Y.shape[0]): | |||
| f = self.sigmoid(torch.matmul(Y[time], self.Wf) + torch.matmul(h, self.Uf) + self.bf.repeat(self.N, 1)) | |||
| j = self.sigmoid(torch.matmul(Y[time], self.Wj) + torch.matmul(h, self.Uj) + self.bj.repeat(self.N, 1)) | |||
| o = self.sigmoid(torch.matmul(Y[time], self.Wo) + torch.matmul(h, self.Uo) + self.bo.repeat(self.N, 1)) | |||
| ct = self.sigmoid(torch.matmul(Y[time], self.Wc) + torch.matmul(h, self.Uc) + self.bc.repeat(self.N, 1)) | |||
| c = j * ct + f * c | |||
| h = o * self.tanh(c) | |||
| Z[time] = h | |||
| return Z | |||