Browse Source

feat: model codes added

master
Mohammad Hashemi 3 years ago
parent
commit
e0aaeecb4d
1 changed files with 85 additions and 0 deletions
  1. 85
    0
      wd_gc.py

+ 85
- 0
wd_gc.py View File

@@ -0,0 +1,85 @@
import torch
import torch.nn as nn

class WD_GCN(nn.Module):
def __init__(self, A, X, edges, hidden_feat=[2, 2]):
super(WD_GCN, self).__init__()
self.device = 1
self.A = A
self.X = X
self.T, self.N = X.shape[0], X.shape[1] # T = number of nodes, N = number of node features
self.v = torch.cuda.FloatTensor([self.N, 1])
self.edge_src_nodes = torch.matmul(edges[[0, 1]].transpose(1, 0).float(), self.v).cuda()
self.edge_trg_nodes = torch.matmul(edges[[0, 2]].transpose(1, 0).float(), self.v).cuda()
self.tanh = torch.nn.Tanh()
self.sigmoid = torch.nn.Sigmoid()
self.relu = torch.nn.ReLU(inplace=False)
self.AX = self.compute_AX(A, X)

# GCN parameters
self.W = nn.Parameter(torch.randn(X.shape[-1], hidden_feat[0]).cuda())

# Edge classification/link prediction parameters
self.U = torch.randn(2*hidden_feat[0], hidden_feat[1]).cuda()


# LSTM parameters
self.Wf = nn.Parameter(torch.randn(hidden_feat[0], hidden_feat[0]).cuda())
self.Wj = nn.Parameter(torch.randn(hidden_feat[0], hidden_feat[0]).cuda())
self.Wc = nn.Parameter(torch.randn(hidden_feat[0], hidden_feat[0]).cuda())
self.Wo = nn.Parameter(torch.randn(hidden_feat[0], hidden_feat[0]).cuda())
self.Uf = nn.Parameter(torch.randn(hidden_feat[0], hidden_feat[0]).cuda())
self.Uj = nn.Parameter(torch.randn(hidden_feat[0], hidden_feat[0]).cuda())
self.Uc = nn.Parameter(torch.randn(hidden_feat[0], hidden_feat[0]).cuda())
self.Uo = nn.Parameter(torch.randn(hidden_feat[0], hidden_feat[0]).cuda())
self.bf = nn.Parameter(torch.randn(hidden_feat[0]).cuda())
self.bj = nn.Parameter(torch.randn(hidden_feat[0]).cuda())
self.bc = nn.Parameter(torch.randn(hidden_feat[0]).cuda())
self.bo = nn.Parameter(torch.randn(hidden_feat[0]).cuda())
self.h_init = torch.randn(hidden_feat[0]).cuda()
self.c_init = torch.randn(hidden_feat[0]).cuda()


def __call__(self, A=None, X=None, edges=None):
return self.forward(A, X, edges)

def forward(self, A=None, X=None, edges=None):
if type(A) == list:
AX = self.compute_AX(A, X)
edge_src_nodes = torch.matmul(edges[[0, 1]].transpose(1, 0).float(), self.v)
edge_trg_nodes = torch.matmul(edges[[0, 2]].transpose(1, 0).float(), self.v)
else:
AX = self.AX
edge_src_nodes = self.edge_src_nodes
edge_trg_nodes = self.edge_trg_nodes

Y = self.relu(torch.matmul(AX.cuda(), self.W.cuda()))
Z = self.LSTM(Y)
Z_mat_edge_src_nodes = Z.reshape(-1, Z.shape[-1])[edge_src_nodes.long()]
Z_mat_edge_trg_nodes = Z.reshape(-1, Z.shape[-1])[edge_trg_nodes.long()]
Z_mat = torch.cat((Z_mat_edge_src_nodes, Z_mat_edge_trg_nodes), dim=1).cuda()
output = torch.matmul(Z_mat, self.U) # this is for prediction head

return output

def compute_AX(self, A, X):
AX = torch.zeros(self.T, self.N, X.shape[-1]).cuda()
for k in range(len(A)):
AX[k] = torch.sparse.mm(A[k].cuda(), X[k])

return AX

def LSTM(self, Y):
c = self.c_init.repeat(self.N, 1)
h = self.h_init.repeat(self.N, 1)
Z = torch.zeros(Y.shape)
for time in range(Y.shape[0]):
f = self.sigmoid(torch.matmul(Y[time], self.Wf) + torch.matmul(h, self.Uf) + self.bf.repeat(self.N, 1))
j = self.sigmoid(torch.matmul(Y[time], self.Wj) + torch.matmul(h, self.Uj) + self.bj.repeat(self.N, 1))
o = self.sigmoid(torch.matmul(Y[time], self.Wo) + torch.matmul(h, self.Uo) + self.bo.repeat(self.N, 1))
ct = self.sigmoid(torch.matmul(Y[time], self.Wc) + torch.matmul(h, self.Uc) + self.bc.repeat(self.N, 1))
c = j * ct + f * c
h = o * self.tanh(c)
Z[time] = h

return Z

Loading…
Cancel
Save