| @@ -0,0 +1,108 @@ | |||
| import os | |||
| import argparse | |||
| import torch | |||
| import torch.nn as nn | |||
| import numpy as np | |||
| import pickle | |||
| from wd_gc import WD_GCN | |||
| from data_loader import DataLoader | |||
| from utils import f1_score | |||
| parser = argparse.ArgumentParser() | |||
| # directories | |||
| parser.add_argument('--data_root', type=str, default='data/', help='path to the root of data directory') | |||
| parser.add_argument('--dataset', type=str, default='bitcoin_alpha', help='dataset name') | |||
| parser.add_argument('--dataset_mat_file_path', type=str, default='Bitcoin_Alpha/saved_content_bitcoin_alpha.mat', help='dataset mat file path') | |||
| parser.add_argument('--save_dir', type=str, default='results_edge_classification_bitcoin_alpha/', help='path to save directory') | |||
| # model params | |||
| parser.add_argument('--hidden_feat', type=list, default=[6, 2], help='hidden feature sizes') | |||
| parser.add_argument('--time_partitioning', type=list, help='time partitioning for train/test/val split') | |||
| # training params | |||
| parser.add_argument('--epochs', type=int, default=1001, help='number of epochs') | |||
| parser.add_argument('--optimizer', type=str, default='SGD', help='optimizer') | |||
| parser.add_argument('--learning_rate', type=float, default=0.01, help='learning rate') | |||
| parser.add_argument('--momentum', type=float, default=0.9, help='momentum') | |||
| parser.add_argument('--alpha_vec', type=list, | |||
| default=[.75, .76, .77, .78, .79, .80, .81, .82, .83, .84, .85, | |||
| .86, .87, .88, .89, .90, .91, .92, .93, .94, .95], help='alpha rate for weighted cross-entropy') | |||
| args = parser.parse_args() | |||
| print('__pyTorch VERSION:', torch.__version__) | |||
| print('# of available devices ', torch.cuda.device_count()) | |||
| print('Is cuda GPU available? ', torch.cuda.is_available()) | |||
| print('========================') | |||
| if torch.cuda.is_available(): | |||
| dev = "cuda:1" | |||
| else: | |||
| dev = "cpu" | |||
| device = torch.device(dev) | |||
| torch.cuda.set_device(device) | |||
| print('Current cuda device', torch.cuda.current_device()) | |||
| # Make the save directory | |||
| if not os.path.exists(args.save_dir): | |||
| os.makedirs(args.save_dir) | |||
| time_slices = args.time_partitioning | |||
| S_train, S_val, S_test = time_slices[0], time_slices[1], time_slices[2] | |||
| # Create data loader | |||
| data_loader = DataLoader(S_train=S_train, S_val=S_val, S_test=S_test, | |||
| data_dir=args.data_root, | |||
| mat_file_path=args.dataset_mat_file_path) | |||
| # load data | |||
| data, C, targets, edges = data_loader.load_data() | |||
| # train | |||
| print("Training Started...") | |||
| for alpha in args.alpha_vec: | |||
| print(">> alpha = {}".format(alpha)) | |||
| class_weights = torch.tensor([alpha, 1.0 - alpha]).to(device) | |||
| save_res_fname = "results_WDGCN" + "_w" + str(round(float(class_weights[0]*100))) + "_" + args.dataset | |||
| # model definition | |||
| gcn = WD_GCN(C['C_train'], data['X_train'].to(device), edges["edges_train"].to(device), args.hidden_feat) | |||
| gcn.to(device) | |||
| if args.optimizer == "SGD": | |||
| optimizer = torch.optim.SGD(gcn.parameters(), lr=args.learning_rate, momentum=args.momentum) | |||
| criterion = nn.CrossEntropyLoss(weight=class_weights) | |||
| ep_acc_loss = np.zeros((args.epochs, 12)) # (precision_train, recall_train, f1_train, loss_train, precision_val, recall_val, f1_val, loss_val, precision_test, recall_test, f1_test, loss_test) | |||
| for ep in range(args.epochs): | |||
| # compute loss and take step | |||
| optimizer.zero_grad() | |||
| output_train = gcn(C['C_train'], data['X_train'].to(device), edges["edges_train"].to(device)) # forward passing | |||
| loss_train = criterion(output_train, targets['target_train'].to(device)) | |||
| loss_train.backward() # backward propagation | |||
| optimizer.step() | |||
| with torch.no_grad(): | |||
| prediction_train = torch.argmax(output_train, dim=1) | |||
| f1_train, precision_train, recall_train = f1_score(prediction_train, targets['target_train'].to(device)) | |||
| if ep % 100 == 0: | |||
| # validation | |||
| output_val = gcn(C['C_val'], data['X_val'].to(device), edges["edges_val"].to(device)) | |||
| prediction_val = torch.argmax(output_val, dim=1) | |||
| f1_val, precision_val, recall_val = f1_score(prediction_val, targets['target_val'].to(device)) | |||
| loss_val = criterion(output_val, targets['target_val'].to(device)) | |||
| # test | |||
| output_test = gcn(C['C_test'], data['X_test'].to(device), edges["edges_test"].to(device)) | |||
| prediction_test = torch.argmax(output_test, dim=1) | |||
| f1_test, precision_test, recall_test = f1_score(prediction_test, targets['target_test'].to(device)) | |||
| loss_test = criterion(output_test, targets['target_test'].to(device)) | |||
| # log | |||
| print("Epoch %d:" % ep) | |||
| print("%d/%d: Train precision/recall/f1 %.4f/ %.4f/ %.4f. Train loss %.4f." % (ep, args.epochs, precision_train, recall_train, f1_train, loss_train)) | |||
| print("%d/%d: Val precision/recall/f1 %.4f/ %.4f/ %.4f. Val loss %.4f." % (ep, args.epochs, precision_val, recall_val, f1_val, loss_val)) | |||
| print("%d/%d: Test precision/recall/f1 %.4f/ %.4f/ %.4f. Test loss %.4f." % (ep, args.epochs, precision_test, recall_test, f1_test, loss_test)) | |||
| ep_acc_loss[ep] = [precision_train, recall_train, f1_train, loss_train, | |||
| precision_val, recall_val, f1_val, loss_val, | |||
| precision_test, recall_test, f1_test, loss_test] | |||
| pickle.dump(ep_acc_loss, open(args.save_dir + save_res_fname, "wb")) | |||