|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108 |
- import os
- import argparse
- import torch
- import torch.nn as nn
- import numpy as np
- import pickle
- from wd_gc import WD_GCN
- from data_loader import DataLoader
- from utils import f1_score
-
- parser = argparse.ArgumentParser()
- # directories
- parser.add_argument('--data_root', type=str, default='data/', help='path to the root of data directory')
- parser.add_argument('--dataset', type=str, default='bitcoin_alpha', help='dataset name')
- parser.add_argument('--dataset_mat_file_path', type=str, default='Bitcoin_Alpha/saved_content_bitcoin_alpha.mat', help='dataset mat file path')
- parser.add_argument('--save_dir', type=str, default='results_edge_classification_bitcoin_alpha/', help='path to save directory')
- # model params
- parser.add_argument('--hidden_feat', type=list, default=[6, 2], help='hidden feature sizes')
- parser.add_argument('--time_partitioning', type=list, help='time partitioning for train/test/val split')
- # training params
- parser.add_argument('--epochs', type=int, default=1001, help='number of epochs')
- parser.add_argument('--optimizer', type=str, default='SGD', help='optimizer')
- parser.add_argument('--learning_rate', type=float, default=0.01, help='learning rate')
- parser.add_argument('--momentum', type=float, default=0.9, help='momentum')
- parser.add_argument('--alpha_vec', type=list,
- default=[.75, .76, .77, .78, .79, .80, .81, .82, .83, .84, .85,
- .86, .87, .88, .89, .90, .91, .92, .93, .94, .95], help='alpha rate for weighted cross-entropy')
- args = parser.parse_args()
-
- print('__pyTorch VERSION:', torch.__version__)
- print('# of available devices ', torch.cuda.device_count())
- print('Is cuda GPU available? ', torch.cuda.is_available())
- print('========================')
- if torch.cuda.is_available():
- dev = "cuda:1"
- else:
- dev = "cpu"
- device = torch.device(dev)
- torch.cuda.set_device(device)
- print('Current cuda device', torch.cuda.current_device())
-
- # Make the save directory
- if not os.path.exists(args.save_dir):
- os.makedirs(args.save_dir)
-
- time_slices = args.time_partitioning
- S_train, S_val, S_test = time_slices[0], time_slices[1], time_slices[2]
-
- # Create data loader
-
- data_loader = DataLoader(S_train=S_train, S_val=S_val, S_test=S_test,
- data_dir=args.data_root,
- mat_file_path=args.dataset_mat_file_path)
-
- # load data
- data, C, targets, edges = data_loader.load_data()
-
- # train
- print("Training Started...")
- for alpha in args.alpha_vec:
- print(">> alpha = {}".format(alpha))
- class_weights = torch.tensor([alpha, 1.0 - alpha]).to(device)
- save_res_fname = "results_WDGCN" + "_w" + str(round(float(class_weights[0]*100))) + "_" + args.dataset
-
- # model definition
- gcn = WD_GCN(C['C_train'], data['X_train'].to(device), edges["edges_train"].to(device), args.hidden_feat)
- gcn.to(device)
-
- if args.optimizer == "SGD":
- optimizer = torch.optim.SGD(gcn.parameters(), lr=args.learning_rate, momentum=args.momentum)
- criterion = nn.CrossEntropyLoss(weight=class_weights)
- ep_acc_loss = np.zeros((args.epochs, 12)) # (precision_train, recall_train, f1_train, loss_train, precision_val, recall_val, f1_val, loss_val, precision_test, recall_test, f1_test, loss_test)
- for ep in range(args.epochs):
- # compute loss and take step
- optimizer.zero_grad()
- output_train = gcn(C['C_train'], data['X_train'].to(device), edges["edges_train"].to(device)) # forward passing
- loss_train = criterion(output_train, targets['target_train'].to(device))
- loss_train.backward() # backward propagation
- optimizer.step()
-
- with torch.no_grad():
- prediction_train = torch.argmax(output_train, dim=1)
- f1_train, precision_train, recall_train = f1_score(prediction_train, targets['target_train'].to(device))
- if ep % 100 == 0:
- # validation
- output_val = gcn(C['C_val'], data['X_val'].to(device), edges["edges_val"].to(device))
- prediction_val = torch.argmax(output_val, dim=1)
- f1_val, precision_val, recall_val = f1_score(prediction_val, targets['target_val'].to(device))
- loss_val = criterion(output_val, targets['target_val'].to(device))
-
- # test
- output_test = gcn(C['C_test'], data['X_test'].to(device), edges["edges_test"].to(device))
- prediction_test = torch.argmax(output_test, dim=1)
- f1_test, precision_test, recall_test = f1_score(prediction_test, targets['target_test'].to(device))
- loss_test = criterion(output_test, targets['target_test'].to(device))
-
- # log
- print("Epoch %d:" % ep)
- print("%d/%d: Train precision/recall/f1 %.4f/ %.4f/ %.4f. Train loss %.4f." % (ep, args.epochs, precision_train, recall_train, f1_train, loss_train))
- print("%d/%d: Val precision/recall/f1 %.4f/ %.4f/ %.4f. Val loss %.4f." % (ep, args.epochs, precision_val, recall_val, f1_val, loss_val))
- print("%d/%d: Test precision/recall/f1 %.4f/ %.4f/ %.4f. Test loss %.4f." % (ep, args.epochs, precision_test, recall_test, f1_test, loss_test))
-
- ep_acc_loss[ep] = [precision_train, recall_train, f1_train, loss_train,
- precision_val, recall_val, f1_val, loss_val,
- precision_test, recall_test, f1_test, loss_test]
-
-
- pickle.dump(ep_acc_loss, open(args.save_dir + save_res_fname, "wb"))
|