|
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980 |
- import math
-
- import torch
-
- from torch.nn.parameter import Parameter
- from torch.nn.modules.module import Module
-
-
- class GraphConvolution(Module):
- """
- Simple GCN layer, similar to https://arxiv.org/abs/1609.02907
- """
- def __init__(self, in_features, out_features, bias=True):
- super(GraphConvolution, self).__init__()
- self.in_features = in_features
- self.out_features = out_features
- self.weight = Parameter(torch.FloatTensor(in_features, out_features))
- if bias:
- self.bias = Parameter(torch.FloatTensor(out_features))
- else:
- self.register_parameter('bias', None)
- self.reset_parameters()
-
- def reset_parameters(self):
- stdv = 1. / math.sqrt(self.weight.size(1))
- self.weight.data.uniform_(-stdv, stdv)
- if self.bias is not None:
- self.bias.data.uniform_(-stdv, stdv)
-
- def forward(self, input, adj):
- support = torch.spmm(input, self.weight)
- output = torch.spmm(adj, support)
- if self.bias is not None:
- return output + self.bias
- else:
- return output
-
- def __repr__(self):
- return self.__class__.__name__ + ' (' \
- + str(self.in_features) + ' -> ' \
- + str(self.out_features) + ')'
-
-
- class CrossLayer(Module):
- """
- MultiLayer
- """
- def __init__(self, L1_dim, L2_dim, bias=True, bet_weight=True):
- super(CrossLayer, self).__init__()
- self.L1_dim = L1_dim
- self.L2_dim = L2_dim
- self.bet_weight = bet_weight
- self.weight = Parameter(torch.FloatTensor(L1_dim, L2_dim))
- if bias:
- self.bias = Parameter(torch.FloatTensor(L2_dim))
- else:
- self.register_parameter('bias', None)
- self.reset_parameters()
-
- def reset_parameters(self):
- stdv = 1. / math.sqrt(self.weight.size(1))
- self.weight.data.uniform_(-stdv, stdv)
- if self.bias is not None:
- self.bias.data.uniform_(-stdv, stdv)
-
- def forward(self, L1_features, L2_features):
- if self.bet_weight:
- temp = torch.mm(L1_features, self.weight)
- output = torch.mm(temp, torch.t(L2_features))
- if self.bias is not None:
- output = output + self.bias
- else:
- output = torch.mm(L1_features, torch.t(L2_features))
- return output
-
-
- def __repr__(self):
- return self.__class__.__name__ + ' (' \
- + str(self.L1_dim) + ' -> ' \
- + str(self.L2_dim) + ')'
|