eSpeak NG is an open source speech synthesizer that supports more than hundred languages and accents.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

wavegen.cpp 48KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926
  1. /***************************************************************************
  2. * Copyright (C) 2005 to 2007 by Jonathan Duddington *
  3. * email: [email protected] *
  4. * *
  5. * This program is free software; you can redistribute it and/or modify *
  6. * it under the terms of the GNU General Public License as published by *
  7. * the Free Software Foundation; either version 3 of the License, or *
  8. * (at your option) any later version. *
  9. * *
  10. * This program is distributed in the hope that it will be useful, *
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of *
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
  13. * GNU General Public License for more details. *
  14. * *
  15. * You should have received a copy of the GNU General Public License *
  16. * along with this program; if not, see: *
  17. * <http://www.gnu.org/licenses/>. *
  18. ***************************************************************************/
  19. #include "StdAfx.h"
  20. // this version keeps wavemult window as a constant fraction
  21. // of the cycle length - but that spreads out the HF peaks too much
  22. #include <stdio.h>
  23. #include <string.h>
  24. #include <stdlib.h>
  25. #include <math.h>
  26. #include "speak_lib.h"
  27. #include "speech.h"
  28. #include "phoneme.h"
  29. #include "synthesize.h"
  30. #include "voice.h"
  31. //#undef INCLUDE_KLATT
  32. #ifdef USE_PORTAUDIO
  33. #include "portaudio.h"
  34. #undef USE_PORTAUDIO
  35. // determine portaudio version by looking for a #define which is not in V18
  36. #ifdef paNeverDropInput
  37. #define USE_PORTAUDIO 19
  38. #else
  39. #define USE_PORTAUDIO 18
  40. #endif
  41. #endif
  42. #define N_SINTAB 2048
  43. #include "sintab.h"
  44. #define PI 3.1415927
  45. #define PI2 6.283185307
  46. #define N_WAV_BUF 10
  47. voice_t *wvoice;
  48. FILE *f_log = NULL;
  49. int option_waveout = 0;
  50. static int option_harmonic1 = 10; // 10
  51. int option_log_frames = 0;
  52. static int flutter_amp = 64;
  53. static int general_amplitude = 60;
  54. static int consonant_amp = 26; // 24
  55. int embedded_value[N_EMBEDDED_VALUES];
  56. static int PHASE_INC_FACTOR;
  57. int samplerate = 0; // this is set by Wavegeninit()
  58. int samplerate_native=0;
  59. extern int option_device_number;
  60. extern int option_quiet;
  61. static wavegen_peaks_t peaks[N_PEAKS];
  62. static int peak_harmonic[N_PEAKS];
  63. static int peak_height[N_PEAKS];
  64. int echo_head;
  65. int echo_tail;
  66. int echo_amp = 0;
  67. short echo_buf[N_ECHO_BUF];
  68. static int echo_length = 0; // period (in sample\) to ensure completion of echo at the end of speech, set in WavegenSetEcho()
  69. static int voicing;
  70. static RESONATOR rbreath[N_PEAKS];
  71. static int harm_sqrt_n = 0;
  72. #define N_LOWHARM 30
  73. static int harm_inc[N_LOWHARM]; // only for these harmonics do we interpolate amplitude between steps
  74. static int *harmspect;
  75. static int hswitch=0;
  76. static int hspect[2][MAX_HARMONIC]; // 2 copies, we interpolate between then
  77. static int max_hval=0;
  78. static int nsamples=0; // number to do
  79. static int modulation_type = 0;
  80. static int glottal_flag = 0;
  81. static int glottal_reduce = 0;
  82. WGEN_DATA wdata;
  83. static int amp_ix;
  84. static int amp_inc;
  85. static unsigned char *amplitude_env = NULL;
  86. static int samplecount=0; // number done
  87. static int samplecount_start=0; // count at start of this segment
  88. static int end_wave=0; // continue to end of wave cycle
  89. static int wavephase;
  90. static int phaseinc;
  91. static int cycle_samples; // number of samples in a cycle at current pitch
  92. static int cbytes;
  93. static int hf_factor;
  94. static double minus_pi_t;
  95. static double two_pi_t;
  96. unsigned char *out_ptr;
  97. unsigned char *out_start;
  98. unsigned char *out_end;
  99. int outbuf_size = 0;
  100. // the queue of operations passed to wavegen from sythesize
  101. long wcmdq[N_WCMDQ][4];
  102. int wcmdq_head=0;
  103. int wcmdq_tail=0;
  104. // pitch,speed,
  105. int embedded_default[N_EMBEDDED_VALUES] = {0,50,175,100,50, 0,0, 0,175,0,0,0,0,0,0};
  106. static int embedded_max[N_EMBEDDED_VALUES] = {0,0x7fff,600,300,99,99,99, 0,600,0,0,0,0,4,0};
  107. #define N_CALLBACK_IX N_WAV_BUF-2 // adjust this delay to match display with the currently spoken word
  108. int current_source_index=0;
  109. extern FILE *f_wave;
  110. #if (USE_PORTAUDIO == 18)
  111. static PortAudioStream *pa_stream=NULL;
  112. #endif
  113. #if (USE_PORTAUDIO == 19)
  114. static PaStream *pa_stream=NULL;
  115. #endif
  116. // 1st index=roughness
  117. // 2nd index=modulation_type
  118. // value: bits 0-3 amplitude (16ths), bits 4-7 every n cycles
  119. #define N_ROUGHNESS 8
  120. static unsigned char modulation_tab[N_ROUGHNESS][8] = {
  121. {0, 0x00, 0x00, 0x00, 0, 0x46, 0xf2, 0x29},
  122. {0, 0x2f, 0x00, 0x2f, 0, 0x45, 0xf2, 0x29},
  123. {0, 0x2f, 0x00, 0x2e, 0, 0x45, 0xf2, 0x28},
  124. {0, 0x2e, 0x00, 0x2d, 0, 0x34, 0xf2, 0x28},
  125. {0, 0x2d, 0x2d, 0x2c, 0, 0x34, 0xf2, 0x28},
  126. {0, 0x2b, 0x2b, 0x2b, 0, 0x34, 0xf2, 0x28},
  127. {0, 0x2a, 0x2a, 0x2a, 0, 0x34, 0xf2, 0x28},
  128. {0, 0x29, 0x29, 0x29, 0, 0x34, 0xf2, 0x28},
  129. };
  130. // Flutter table, to add natural variations to the pitch
  131. #define N_FLUTTER 0x170
  132. static int Flutter_inc;
  133. static const unsigned char Flutter_tab[N_FLUTTER] = {
  134. 0x80, 0x9b, 0xb5, 0xcb, 0xdc, 0xe8, 0xed, 0xec,
  135. 0xe6, 0xdc, 0xce, 0xbf, 0xb0, 0xa3, 0x98, 0x90,
  136. 0x8c, 0x8b, 0x8c, 0x8f, 0x92, 0x94, 0x95, 0x92,
  137. 0x8c, 0x83, 0x78, 0x69, 0x59, 0x49, 0x3c, 0x31,
  138. 0x2a, 0x29, 0x2d, 0x36, 0x44, 0x56, 0x69, 0x7d,
  139. 0x8f, 0x9f, 0xaa, 0xb1, 0xb2, 0xad, 0xa4, 0x96,
  140. 0x87, 0x78, 0x69, 0x5c, 0x53, 0x4f, 0x4f, 0x55,
  141. 0x5e, 0x6b, 0x7a, 0x88, 0x96, 0xa2, 0xab, 0xb0,
  142. 0xb1, 0xae, 0xa8, 0xa0, 0x98, 0x91, 0x8b, 0x88,
  143. 0x89, 0x8d, 0x94, 0x9d, 0xa8, 0xb2, 0xbb, 0xc0,
  144. 0xc1, 0xbd, 0xb4, 0xa5, 0x92, 0x7c, 0x63, 0x4a,
  145. 0x32, 0x1e, 0x0e, 0x05, 0x02, 0x05, 0x0f, 0x1e,
  146. 0x30, 0x44, 0x59, 0x6d, 0x7f, 0x8c, 0x96, 0x9c,
  147. 0x9f, 0x9f, 0x9d, 0x9b, 0x99, 0x99, 0x9c, 0xa1,
  148. 0xa9, 0xb3, 0xbf, 0xca, 0xd5, 0xdc, 0xe0, 0xde,
  149. 0xd8, 0xcc, 0xbb, 0xa6, 0x8f, 0x77, 0x60, 0x4b,
  150. 0x3a, 0x2e, 0x28, 0x29, 0x2f, 0x3a, 0x48, 0x59,
  151. 0x6a, 0x7a, 0x86, 0x90, 0x94, 0x95, 0x91, 0x89,
  152. 0x80, 0x75, 0x6b, 0x62, 0x5c, 0x5a, 0x5c, 0x61,
  153. 0x69, 0x74, 0x80, 0x8a, 0x94, 0x9a, 0x9e, 0x9d,
  154. 0x98, 0x90, 0x86, 0x7c, 0x71, 0x68, 0x62, 0x60,
  155. 0x63, 0x6b, 0x78, 0x88, 0x9b, 0xaf, 0xc2, 0xd2,
  156. 0xdf, 0xe6, 0xe7, 0xe2, 0xd7, 0xc6, 0xb2, 0x9c,
  157. 0x84, 0x6f, 0x5b, 0x4b, 0x40, 0x39, 0x37, 0x38,
  158. 0x3d, 0x43, 0x4a, 0x50, 0x54, 0x56, 0x55, 0x52,
  159. 0x4d, 0x48, 0x42, 0x3f, 0x3e, 0x41, 0x49, 0x56,
  160. 0x67, 0x7c, 0x93, 0xab, 0xc3, 0xd9, 0xea, 0xf6,
  161. 0xfc, 0xfb, 0xf4, 0xe7, 0xd5, 0xc0, 0xaa, 0x94,
  162. 0x80, 0x71, 0x64, 0x5d, 0x5a, 0x5c, 0x61, 0x68,
  163. 0x70, 0x77, 0x7d, 0x7f, 0x7f, 0x7b, 0x74, 0x6b,
  164. 0x61, 0x57, 0x4e, 0x48, 0x46, 0x48, 0x4e, 0x59,
  165. 0x66, 0x75, 0x84, 0x93, 0x9f, 0xa7, 0xab, 0xaa,
  166. 0xa4, 0x99, 0x8b, 0x7b, 0x6a, 0x5b, 0x4e, 0x46,
  167. 0x43, 0x45, 0x4d, 0x5a, 0x6b, 0x7f, 0x92, 0xa6,
  168. 0xb8, 0xc5, 0xcf, 0xd3, 0xd2, 0xcd, 0xc4, 0xb9,
  169. 0xad, 0xa1, 0x96, 0x8e, 0x89, 0x87, 0x87, 0x8a,
  170. 0x8d, 0x91, 0x92, 0x91, 0x8c, 0x84, 0x78, 0x68,
  171. 0x55, 0x41, 0x2e, 0x1c, 0x0e, 0x05, 0x01, 0x05,
  172. 0x0f, 0x1f, 0x34, 0x4d, 0x68, 0x81, 0x9a, 0xb0,
  173. 0xc1, 0xcd, 0xd3, 0xd3, 0xd0, 0xc8, 0xbf, 0xb5,
  174. 0xab, 0xa4, 0x9f, 0x9c, 0x9d, 0xa0, 0xa5, 0xaa,
  175. 0xae, 0xb1, 0xb0, 0xab, 0xa3, 0x96, 0x87, 0x76,
  176. 0x63, 0x51, 0x42, 0x36, 0x2f, 0x2d, 0x31, 0x3a,
  177. 0x48, 0x59, 0x6b, 0x7e, 0x8e, 0x9c, 0xa6, 0xaa,
  178. 0xa9, 0xa3, 0x98, 0x8a, 0x7b, 0x6c, 0x5d, 0x52,
  179. 0x4a, 0x48, 0x4a, 0x50, 0x5a, 0x67, 0x75, 0x82
  180. };
  181. // waveform shape table for HF peaks, formants 6,7,8
  182. #define N_WAVEMULT 128
  183. static int wavemult_offset=0;
  184. static int wavemult_max=0;
  185. // the presets are for 22050 Hz sample rate.
  186. // A different rate will need to recalculate the presets in WavegenInit()
  187. static unsigned char wavemult[N_WAVEMULT] = {
  188. 0, 0, 0, 2, 3, 5, 8, 11, 14, 18, 22, 27, 32, 37, 43, 49,
  189. 55, 62, 69, 76, 83, 90, 98,105,113,121,128,136,144,152,159,166,
  190. 174,181,188,194,201,207,213,218,224,228,233,237,240,244,246,249,
  191. 251,252,253,253,253,253,252,251,249,246,244,240,237,233,228,224,
  192. 218,213,207,201,194,188,181,174,166,159,152,144,136,128,121,113,
  193. 105, 98, 90, 83, 76, 69, 62, 55, 49, 43, 37, 32, 27, 22, 18, 14,
  194. 11, 8, 5, 3, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  195. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
  196. // set from y = pow(2,x) * 128, x=-1 to 1
  197. unsigned char pitch_adjust_tab[MAX_PITCH_VALUE+1] = {
  198. 64, 65, 66, 67, 68, 69, 70, 71,
  199. 72, 73, 74, 75, 76, 77, 78, 79,
  200. 80, 81, 82, 83, 84, 86, 87, 88,
  201. 89, 91, 92, 93, 94, 96, 97, 98,
  202. 100,101,103,104,105,107,108,110,
  203. 111,113,115,116,118,119,121,123,
  204. 124,126,128,130,132,133,135,137,
  205. 139,141,143,145,147,149,151,153,
  206. 155,158,160,162,164,167,169,171,
  207. 174,176,179,181,184,186,189,191,
  208. 194,197,199,202,205,208,211,214,
  209. 217,220,223,226,229,232,236,239,
  210. 242,246,249,252, 254,255 };
  211. int WavegenFill(int fill_zeros);
  212. #ifdef LOG_FRAMES
  213. static void LogMarker(int type, int value)
  214. {//=======================================
  215. if(option_log_frames == 0)
  216. return;
  217. if((type == espeakEVENT_PHONEME) || (type == espeakEVENT_SENTENCE))
  218. {
  219. f_log=fopen("log-espeakedit","a");
  220. if(f_log)
  221. {
  222. if(type == espeakEVENT_PHONEME)
  223. fprintf(f_log,"Phoneme [%s]\n",WordToString(value));
  224. else
  225. fprintf(f_log,"\n");
  226. fclose(f_log);
  227. f_log = NULL;
  228. }
  229. }
  230. }
  231. #endif
  232. void WcmdqStop()
  233. {//=============
  234. wcmdq_head = 0;
  235. wcmdq_tail = 0;
  236. #ifdef USE_PORTAUDIO
  237. Pa_AbortStream(pa_stream);
  238. #endif
  239. if(mbrola_name[0] != 0)
  240. MbrolaReset();
  241. }
  242. int WcmdqFree()
  243. {//============
  244. int i;
  245. i = wcmdq_head - wcmdq_tail;
  246. if(i <= 0) i += N_WCMDQ;
  247. return(i);
  248. }
  249. int WcmdqUsed()
  250. {//============
  251. return(N_WCMDQ - WcmdqFree());
  252. }
  253. void WcmdqInc()
  254. {//============
  255. wcmdq_tail++;
  256. if(wcmdq_tail >= N_WCMDQ) wcmdq_tail=0;
  257. }
  258. static void WcmdqIncHead()
  259. {//=======================
  260. wcmdq_head++;
  261. if(wcmdq_head >= N_WCMDQ) wcmdq_head=0;
  262. }
  263. // data points from which to make the presets for pk_shape1 and pk_shape2
  264. #define PEAKSHAPEW 256
  265. static const float pk_shape_x[2][8] = {
  266. {0,-0.6f, 0.0f, 0.6f, 1.4f, 2.5f, 4.5f, 5.5f},
  267. {0,-0.6f, 0.0f, 0.6f, 1.4f, 2.0f, 4.5f, 5.5f }};
  268. static const float pk_shape_y[2][8] = {
  269. {0, 67, 81, 67, 31, 14, 0, -6} ,
  270. {0, 77, 81, 77, 31, 7, 0, -6 }};
  271. unsigned char pk_shape1[PEAKSHAPEW+1] = {
  272. 255,254,254,254,254,254,253,253,252,251,251,250,249,248,247,246,
  273. 245,244,242,241,239,238,236,234,233,231,229,227,225,223,220,218,
  274. 216,213,211,209,207,205,203,201,199,197,195,193,191,189,187,185,
  275. 183,180,178,176,173,171,169,166,164,161,159,156,154,151,148,146,
  276. 143,140,138,135,132,129,126,123,120,118,115,112,108,105,102, 99,
  277. 96, 95, 93, 91, 90, 88, 86, 85, 83, 82, 80, 79, 77, 76, 74, 73,
  278. 72, 70, 69, 68, 67, 66, 64, 63, 62, 61, 60, 59, 58, 57, 56, 55,
  279. 55, 54, 53, 52, 52, 51, 50, 50, 49, 48, 48, 47, 47, 46, 46, 46,
  280. 45, 45, 45, 44, 44, 44, 44, 44, 44, 44, 43, 43, 43, 43, 44, 43,
  281. 42, 42, 41, 40, 40, 39, 38, 38, 37, 36, 36, 35, 35, 34, 33, 33,
  282. 32, 32, 31, 30, 30, 29, 29, 28, 28, 27, 26, 26, 25, 25, 24, 24,
  283. 23, 23, 22, 22, 21, 21, 20, 20, 19, 19, 18, 18, 18, 17, 17, 16,
  284. 16, 15, 15, 15, 14, 14, 13, 13, 13, 12, 12, 11, 11, 11, 10, 10,
  285. 10, 9, 9, 9, 8, 8, 8, 7, 7, 7, 7, 6, 6, 6, 5, 5,
  286. 5, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 2,
  287. 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  288. 0 };
  289. static unsigned char pk_shape2[PEAKSHAPEW+1] = {
  290. 255,254,254,254,254,254,254,254,254,254,253,253,253,253,252,252,
  291. 252,251,251,251,250,250,249,249,248,248,247,247,246,245,245,244,
  292. 243,243,242,241,239,237,235,233,231,229,227,225,223,221,218,216,
  293. 213,211,208,205,203,200,197,194,191,187,184,181,178,174,171,167,
  294. 163,160,156,152,148,144,140,136,132,127,123,119,114,110,105,100,
  295. 96, 94, 91, 88, 86, 83, 81, 78, 76, 74, 71, 69, 66, 64, 62, 60,
  296. 57, 55, 53, 51, 49, 47, 44, 42, 40, 38, 36, 34, 32, 30, 29, 27,
  297. 25, 23, 21, 19, 18, 16, 14, 12, 11, 9, 7, 6, 4, 3, 1, 0,
  298. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  299. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  300. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  301. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  302. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  303. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  304. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  305. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  306. 0 };
  307. static unsigned char *pk_shape;
  308. static void WavegenInitPkData(int which)
  309. {//=====================================
  310. // this is only needed to set up the presets for pk_shape1 and pk_shape2
  311. // These have already been pre-calculated and preset
  312. #ifdef deleted
  313. int ix;
  314. int p;
  315. float x;
  316. float y[PEAKSHAPEW];
  317. float maxy=0;
  318. if(which==0)
  319. pk_shape = pk_shape1;
  320. else
  321. pk_shape = pk_shape2;
  322. p = 0;
  323. for(ix=0;ix<PEAKSHAPEW;ix++)
  324. {
  325. x = (4.5*ix)/PEAKSHAPEW;
  326. if(x >= pk_shape_x[which][p+3]) p++;
  327. y[ix] = polint(&pk_shape_x[which][p],&pk_shape_y[which][p],3,x);
  328. if(y[ix] > maxy) maxy = y[ix];
  329. }
  330. for(ix=0;ix<PEAKSHAPEW;ix++)
  331. {
  332. p = (int)(y[ix]*255/maxy);
  333. pk_shape[ix] = (p >= 0) ? p : 0;
  334. }
  335. pk_shape[PEAKSHAPEW]=0;
  336. #endif
  337. } // end of WavegenInitPkData
  338. #ifdef USE_PORTAUDIO
  339. // PortAudio interface
  340. static int userdata[4];
  341. static PaError pa_init_err=0;
  342. static int out_channels=1;
  343. #if USE_PORTAUDIO == 18
  344. static int WaveCallback(void *inputBuffer, void *outputBuffer,
  345. unsigned long framesPerBuffer, PaTimestamp outTime, void *userData )
  346. #else
  347. static int WaveCallback(const void *inputBuffer, void *outputBuffer,
  348. long unsigned int framesPerBuffer, const PaStreamCallbackTimeInfo *outTime,
  349. PaStreamCallbackFlags flags, void *userData )
  350. #endif
  351. {
  352. int ix;
  353. int result;
  354. unsigned char *p;
  355. out_ptr = out_start = (unsigned char *)outputBuffer;
  356. out_end = out_ptr + framesPerBuffer*2;
  357. #ifdef LIBRARY
  358. event_list_ix = 0;
  359. #endif
  360. result = WavegenFill(1);
  361. #ifdef LIBRARY
  362. count_samples += framesPerBuffer;
  363. if(synth_callback)
  364. {
  365. // synchronous-playback mode, allow the calling process to abort the speech
  366. event_list[event_list_ix].type = espeakEVENT_LIST_TERMINATED; // indicates end of event list
  367. event_list[event_list_ix].user_data = 0;
  368. if(synth_callback(NULL,0,event_list) == 1)
  369. {
  370. SpeakNextClause(NULL,NULL,2); // stop speaking
  371. result = 1;
  372. }
  373. }
  374. #endif
  375. #ifdef ARCH_BIG
  376. {
  377. // swap the order of bytes in each sound sample in the portaudio buffer
  378. int c;
  379. out_ptr = (unsigned char *)outputBuffer;
  380. out_end = out_ptr + framesPerBuffer*2;
  381. while(out_ptr < out_end)
  382. {
  383. c = out_ptr[0];
  384. out_ptr[0] = out_ptr[1];
  385. out_ptr[1] = c;
  386. out_ptr += 2;
  387. }
  388. }
  389. #endif
  390. if(out_channels == 2)
  391. {
  392. // sound output can only do stereo, not mono. Duplicate each sound sample to
  393. // produce 2 channels.
  394. out_ptr = (unsigned char *)outputBuffer;
  395. for(ix=framesPerBuffer-1; ix>=0; ix--)
  396. {
  397. p = &out_ptr[ix*4];
  398. p[3] = p[1] = out_ptr[ix*2 + 1];
  399. p[2] = p[0] = out_ptr[ix*2];
  400. }
  401. }
  402. #if USE_PORTAUDIO == 18
  403. #ifdef PLATFORM_WINDOWS
  404. return(result);
  405. #endif
  406. if(result != 0)
  407. {
  408. static int end_timer = 0;
  409. if(end_timer == 0)
  410. end_timer = 4;
  411. if(end_timer > 0)
  412. {
  413. end_timer--;
  414. if(end_timer == 0)
  415. return(1);
  416. }
  417. }
  418. return(0);
  419. #else
  420. return(result);
  421. #endif
  422. } // end of WaveCallBack
  423. #if USE_PORTAUDIO == 19
  424. /* This is a fixed version of Pa_OpenDefaultStream() for use if the version in portaudio V19
  425. is broken */
  426. static PaError Pa_OpenDefaultStream2( PaStream** stream,
  427. int inputChannelCount,
  428. int outputChannelCount,
  429. PaSampleFormat sampleFormat,
  430. double sampleRate,
  431. unsigned long framesPerBuffer,
  432. PaStreamCallback *streamCallback,
  433. void *userData )
  434. {
  435. PaError result;
  436. PaStreamParameters hostApiOutputParameters;
  437. if(option_device_number >= 0)
  438. hostApiOutputParameters.device = option_device_number;
  439. else
  440. hostApiOutputParameters.device = Pa_GetDefaultOutputDevice();
  441. if( hostApiOutputParameters.device == paNoDevice )
  442. return paDeviceUnavailable;
  443. hostApiOutputParameters.channelCount = outputChannelCount;
  444. hostApiOutputParameters.sampleFormat = sampleFormat;
  445. /* defaultHighOutputLatency is used below instead of
  446. defaultLowOutputLatency because it is more important for the default
  447. stream to work reliably than it is for it to work with the lowest
  448. latency.
  449. */
  450. hostApiOutputParameters.suggestedLatency =
  451. Pa_GetDeviceInfo( hostApiOutputParameters.device )->defaultHighOutputLatency;
  452. hostApiOutputParameters.hostApiSpecificStreamInfo = NULL;
  453. result = Pa_OpenStream(
  454. stream, NULL, &hostApiOutputParameters, sampleRate, framesPerBuffer, paNoFlag, streamCallback, userData );
  455. return(result);
  456. }
  457. #endif
  458. int WavegenOpenSound()
  459. {//===================
  460. PaError err, err2;
  461. PaError active;
  462. if(option_waveout || option_quiet)
  463. {
  464. // writing to WAV file, not to portaudio
  465. return(0);
  466. }
  467. #if USE_PORTAUDIO == 18
  468. active = Pa_StreamActive(pa_stream);
  469. #else
  470. active = Pa_IsStreamActive(pa_stream);
  471. #endif
  472. if(active == 1)
  473. return(0);
  474. if(active < 0)
  475. {
  476. out_channels = 1;
  477. #if USE_PORTAUDIO == 18
  478. err2 = Pa_OpenDefaultStream(&pa_stream,0,1,paInt16,samplerate,512,N_WAV_BUF,WaveCallback,(void *)userdata);
  479. if(err2 == paInvalidChannelCount)
  480. {
  481. // failed to open with mono, try stereo
  482. out_channels=2;
  483. err2 = Pa_OpenDefaultStream(&pa_stream,0,2,paInt16,samplerate,512,N_WAV_BUF,WaveCallback,(void *)userdata);
  484. }
  485. #else
  486. err2 = Pa_OpenDefaultStream2(&pa_stream,0,1,paInt16,(double)samplerate,512,WaveCallback,(void *)userdata);
  487. if(err2 == paInvalidChannelCount)
  488. {
  489. // failed to open with mono, try stereo
  490. out_channels=2;
  491. err2 = Pa_OpenDefaultStream(&pa_stream,0,2,paInt16,(double)samplerate,512,WaveCallback,(void *)userdata);
  492. }
  493. #endif
  494. }
  495. err = Pa_StartStream(pa_stream);
  496. #if USE_PORTAUDIO == 19
  497. if(err == paStreamIsNotStopped)
  498. {
  499. // not sure why we need this, but PA v19 seems to need it
  500. err = Pa_StopStream(pa_stream);
  501. err = Pa_StartStream(pa_stream);
  502. }
  503. #endif
  504. if(err != paNoError)
  505. {
  506. // exit speak if we can't open the sound device - this is OK if speak is being run for each utterance
  507. exit(2);
  508. }
  509. return(0);
  510. }
  511. int WavegenCloseSound()
  512. {//====================
  513. PaError active;
  514. // check whether speaking has finished, and close the stream
  515. if(pa_stream != NULL)
  516. {
  517. #if USE_PORTAUDIO == 18
  518. active = Pa_StreamActive(pa_stream);
  519. #else
  520. active = Pa_IsStreamActive(pa_stream);
  521. #endif
  522. if(WcmdqUsed() == 0) // also check that the queue is empty
  523. {
  524. if(active == 0)
  525. {
  526. Pa_CloseStream(pa_stream);
  527. pa_stream = NULL;
  528. return(1);
  529. }
  530. }
  531. else
  532. {
  533. WavegenOpenSound(); // still items in the queue, shouldn't be closed
  534. }
  535. }
  536. return(0);
  537. }
  538. int WavegenInitSound()
  539. {//===================
  540. PaError err;
  541. if(option_quiet)
  542. return(0);
  543. // PortAudio sound output library
  544. err = Pa_Initialize();
  545. pa_init_err = err;
  546. if(err != paNoError)
  547. {
  548. fprintf(stderr,"Failed to initialise the PortAudio sound\n");
  549. return(1);
  550. }
  551. return(0);
  552. }
  553. #else
  554. int WavegenOpenSound()
  555. {//===================
  556. return(0);
  557. }
  558. int WavegenCloseSound()
  559. {//====================
  560. return(0);
  561. }
  562. int WavegenInitSound()
  563. {//===================
  564. return(0);
  565. }
  566. #endif
  567. void WavegenInit(int rate, int wavemult_fact)
  568. {//==========================================
  569. int ix;
  570. double x;
  571. if(wavemult_fact == 0)
  572. wavemult_fact=60; // default
  573. wvoice = NULL;
  574. samplerate = samplerate_native = rate;
  575. PHASE_INC_FACTOR = 0x8000000 / samplerate; // assumes pitch is Hz*32
  576. Flutter_inc = (64 * samplerate)/rate;
  577. samplecount = 0;
  578. nsamples = 0;
  579. wavephase = 0x7fffffff;
  580. max_hval = 0;
  581. wdata.amplitude = 32;
  582. for(ix=0; ix<N_EMBEDDED_VALUES; ix++)
  583. embedded_value[ix] = embedded_default[ix];
  584. // set up window to generate a spread of harmonics from a
  585. // single peak for HF peaks
  586. wavemult_max = (samplerate * wavemult_fact)/(256 * 50);
  587. if(wavemult_max > N_WAVEMULT) wavemult_max = N_WAVEMULT;
  588. wavemult_offset = wavemult_max/2;
  589. if(samplerate != 22050)
  590. {
  591. // wavemult table has preset values for 22050 Hz, we only need to
  592. // recalculate them if we have a different sample rate
  593. for(ix=0; ix<wavemult_max; ix++)
  594. {
  595. x = 127*(1.0 - cos(PI2*ix/wavemult_max));
  596. wavemult[ix] = (int)x;
  597. }
  598. }
  599. WavegenInitPkData(1);
  600. WavegenInitPkData(0);
  601. pk_shape = pk_shape2; // pk_shape2
  602. #ifdef INCLUDE_KLATT
  603. KlattInit();
  604. #endif
  605. #ifdef LOG_FRAMES
  606. remove("log-espeakedit");
  607. remove("log-klatt");
  608. #endif
  609. } // end of WavegenInit
  610. int GetAmplitude(void)
  611. {//===================
  612. int amp;
  613. // normal, none, reduced, moderate, strong
  614. static const unsigned char amp_emphasis[5] = {16, 16, 10, 16, 22};
  615. amp = (embedded_value[EMBED_A])*55/100;
  616. general_amplitude = amp * amp_emphasis[embedded_value[EMBED_F]] / 16;
  617. return(general_amplitude);
  618. }
  619. static void WavegenSetEcho(void)
  620. {//=============================
  621. int delay;
  622. int amp;
  623. voicing = wvoice->voicing;
  624. delay = wvoice->echo_delay;
  625. amp = wvoice->echo_amp;
  626. if(delay >= N_ECHO_BUF)
  627. delay = N_ECHO_BUF-1;
  628. if(amp > 100)
  629. amp = 100;
  630. memset(echo_buf,0,sizeof(echo_buf));
  631. echo_tail = 0;
  632. if(embedded_value[EMBED_H] > 0)
  633. {
  634. // set echo from an embedded command in the text
  635. amp = embedded_value[EMBED_H];
  636. delay = 130;
  637. }
  638. #ifdef deleted
  639. if(embedded_value[EMBED_T] > 0)
  640. {
  641. // announcing punctuation, add a small echo
  642. // This seems unpopular
  643. amp = embedded_value[EMBED_T] * 8;
  644. delay = 60;
  645. }
  646. #endif
  647. if(delay == 0)
  648. amp = 0;
  649. echo_head = (delay * samplerate)/1000;
  650. echo_length = echo_head; // ensure completion of echo at the end of speech. Use 1 delay period?
  651. if(amp == 0)
  652. echo_length = 0;
  653. if(amp > 20)
  654. echo_length = echo_head * 2; // perhaps allow 2 echo periods if the echo is loud.
  655. // echo_amp units are 1/256ths of the amplitude of the original sound.
  656. echo_amp = amp;
  657. // compensate (partially) for increase in amplitude due to echo
  658. general_amplitude = GetAmplitude();
  659. general_amplitude = ((general_amplitude * (500-amp))/500);
  660. } // end of WavegenSetEcho
  661. int PeaksToHarmspect(wavegen_peaks_t *peaks, int pitch, int *htab, int control)
  662. {//============================================================================
  663. // Calculate the amplitude of each harmonics from the formants
  664. // Only for formants 0 to 5
  665. // control 0=initial call, 1=every 64 cycles
  666. // pitch and freqs are Hz<<16
  667. int f;
  668. wavegen_peaks_t *p;
  669. int fp; // centre freq of peak
  670. int fhi; // high freq of peak
  671. int h; // harmonic number
  672. int pk;
  673. int hmax;
  674. int hmax_samplerate; // highest harmonic allowed for the samplerate
  675. int x;
  676. int ix;
  677. int h1;
  678. #ifdef SPECT_EDITOR
  679. if(harm_sqrt_n > 0)
  680. return(HarmToHarmspect(pitch,htab));
  681. #endif
  682. // initialise as much of *out as we will need
  683. if(wvoice == NULL)
  684. return(1);
  685. hmax = (peaks[wvoice->n_harmonic_peaks].freq + peaks[wvoice->n_harmonic_peaks].right)/pitch;
  686. if(hmax >= MAX_HARMONIC)
  687. hmax = MAX_HARMONIC-1;
  688. // restrict highest harmonic to half the samplerate
  689. hmax_samplerate = (((samplerate * 19)/40) << 16)/pitch; // only 95% of Nyquist freq
  690. // hmax_samplerate = (samplerate << 16)/(pitch*2);
  691. if(hmax > hmax_samplerate)
  692. hmax = hmax_samplerate;
  693. for(h=0;h<=hmax;h++)
  694. htab[h]=0;
  695. h=0;
  696. for(pk=0; pk<=wvoice->n_harmonic_peaks; pk++)
  697. {
  698. p = &peaks[pk];
  699. if((p->height == 0) || (fp = p->freq)==0)
  700. continue;
  701. fhi = p->freq + p->right;
  702. h = ((p->freq - p->left) / pitch) + 1;
  703. if(h <= 0) h = 1;
  704. for(f=pitch*h; f < fp; f+=pitch)
  705. {
  706. htab[h++] += pk_shape[(fp-f)/(p->left>>8)] * p->height;
  707. }
  708. for(; f < fhi; f+=pitch)
  709. {
  710. htab[h++] += pk_shape[(f-fp)/(p->right>>8)] * p->height;
  711. }
  712. }
  713. {
  714. int y;
  715. int h2;
  716. // increase bass
  717. y = peaks[1].height * 10; // addition as a multiple of 1/256s
  718. h2 = (1000<<16)/pitch; // decrease until 1000Hz
  719. if(h2 > 0)
  720. {
  721. x = y/h2;
  722. h = 1;
  723. while(y > 0)
  724. {
  725. htab[h++] += y;
  726. y -= x;
  727. }
  728. }
  729. }
  730. // find the nearest harmonic for HF peaks where we don't use shape
  731. for(; pk<N_PEAKS; pk++)
  732. {
  733. x = peaks[pk].height >> 14;
  734. peak_height[pk] = (x * x * 5)/2;
  735. // find the nearest harmonic for HF peaks where we don't use shape
  736. if(control == 0)
  737. {
  738. // set this initially, but make changes only at the quiet point
  739. peak_harmonic[pk] = peaks[pk].freq / pitch;
  740. }
  741. // only use harmonics up to half the samplerate
  742. if(peak_harmonic[pk] >= hmax_samplerate)
  743. peak_height[pk] = 0;
  744. }
  745. // convert from the square-rooted values
  746. f = 0;
  747. for(h=0; h<=hmax; h++, f+=pitch)
  748. {
  749. x = htab[h] >> 15;
  750. htab[h] = (x * x) >> 8;
  751. if((ix = (f >> 19)) < N_TONE_ADJUST)
  752. {
  753. htab[h] = (htab[h] * wvoice->tone_adjust[ix]) >> 13; // index tone_adjust with Hz/8
  754. }
  755. }
  756. // adjust the amplitude of the first harmonic, affects tonal quality
  757. h1 = htab[1] * option_harmonic1;
  758. htab[1] = h1/8;
  759. // calc intermediate increments of LF harmonics
  760. if(control & 1)
  761. {
  762. for(h=1; h<N_LOWHARM; h++)
  763. {
  764. harm_inc[h] = (htab[h] - harmspect[h]) >> 3;
  765. }
  766. }
  767. return(hmax); // highest harmonic number
  768. } // end of PeaksToHarmspect
  769. static void AdvanceParameters()
  770. {//============================
  771. // Called every 64 samples to increment the formant freq, height, and widths
  772. int x;
  773. int ix;
  774. static int Flutter_ix = 0;
  775. // advance the pitch
  776. wdata.pitch_ix += wdata.pitch_inc;
  777. if((ix = wdata.pitch_ix>>8) > 127) ix = 127;
  778. x = wdata.pitch_env[ix] * wdata.pitch_range;
  779. wdata.pitch = (x>>8) + wdata.pitch_base;
  780. amp_ix += amp_inc;
  781. /* add pitch flutter */
  782. if(Flutter_ix >= (N_FLUTTER*64))
  783. Flutter_ix = 0;
  784. x = ((int)(Flutter_tab[Flutter_ix >> 6])-0x80) * flutter_amp;
  785. Flutter_ix += Flutter_inc;
  786. wdata.pitch += x;
  787. if(wdata.pitch < 102400)
  788. wdata.pitch = 102400; // min pitch, 25 Hz (25 << 12)
  789. if(samplecount == samplecount_start)
  790. return;
  791. for(ix=0; ix <= wvoice->n_harmonic_peaks; ix++)
  792. {
  793. peaks[ix].freq1 += peaks[ix].freq_inc;
  794. peaks[ix].freq = int(peaks[ix].freq1);
  795. peaks[ix].height1 += peaks[ix].height_inc;
  796. if((peaks[ix].height = int(peaks[ix].height1)) < 0)
  797. peaks[ix].height = 0;
  798. peaks[ix].left1 += peaks[ix].left_inc;
  799. peaks[ix].left = int(peaks[ix].left1);
  800. if(ix < 3)
  801. {
  802. peaks[ix].right1 += peaks[ix].right_inc;
  803. peaks[ix].right = int(peaks[ix].right1);
  804. }
  805. else
  806. {
  807. peaks[ix].right = peaks[ix].left;
  808. }
  809. }
  810. for(;ix < 8; ix++)
  811. {
  812. // formants 6,7,8 don't have a width parameter
  813. if(ix < 7)
  814. {
  815. peaks[ix].freq1 += peaks[ix].freq_inc;
  816. peaks[ix].freq = int(peaks[ix].freq1);
  817. }
  818. peaks[ix].height1 += peaks[ix].height_inc;
  819. if((peaks[ix].height = int(peaks[ix].height1)) < 0)
  820. peaks[ix].height = 0;
  821. }
  822. #ifdef SPECT_EDITOR
  823. if(harm_sqrt_n != 0)
  824. {
  825. // We are generating from a harmonic spectrum at a given pitch, not from formant peaks
  826. for(ix=0; ix<harm_sqrt_n; ix++)
  827. harm_sqrt[ix] += harm_sqrt_inc[ix];
  828. }
  829. #endif
  830. } // end of AdvanceParameters
  831. #ifndef PLATFORM_RISCOS
  832. static double resonator(RESONATOR *r, double input)
  833. {//================================================
  834. double x;
  835. x = r->a * input + r->b * r->x1 + r->c * r->x2;
  836. r->x2 = r->x1;
  837. r->x1 = x;
  838. return x;
  839. }
  840. static void setresonator(RESONATOR *rp, int freq, int bwidth, int init)
  841. {//====================================================================
  842. // freq Frequency of resonator in Hz
  843. // bwidth Bandwidth of resonator in Hz
  844. // init Initialize internal data
  845. double x;
  846. double arg;
  847. if(init)
  848. {
  849. rp->x1 = 0;
  850. rp->x2 = 0;
  851. }
  852. // x = exp(-pi * bwidth * t)
  853. arg = minus_pi_t * bwidth;
  854. x = exp(arg);
  855. // c = -(x*x)
  856. rp->c = -(x * x);
  857. // b = x * 2*cos(2 pi * freq * t)
  858. arg = two_pi_t * freq;
  859. rp->b = x * cos(arg) * 2.0;
  860. // a = 1.0 - b - c
  861. rp->a = 1.0 - rp->b - rp->c;
  862. } // end if setresonator
  863. #endif
  864. void InitBreath(void)
  865. {//==================
  866. #ifndef PLATFORM_RISCOS
  867. int ix;
  868. minus_pi_t = -PI / samplerate;
  869. two_pi_t = -2.0 * minus_pi_t;
  870. for(ix=0; ix<N_PEAKS; ix++)
  871. {
  872. setresonator(&rbreath[ix],2000,200,1);
  873. }
  874. #endif
  875. } // end of InitBreath
  876. static void SetBreath()
  877. {//====================
  878. #ifndef PLATFORM_RISCOS
  879. int pk;
  880. if(wvoice->breath[0] == 0)
  881. return;
  882. for(pk=1; pk<N_PEAKS; pk++)
  883. {
  884. if(wvoice->breath[pk] != 0)
  885. {
  886. // breath[0] indicates that some breath formants are needed
  887. // set the freq from the current ynthesis formant and the width from the voice data
  888. setresonator(&rbreath[pk], peaks[pk].freq >> 16, wvoice->breathw[pk],0);
  889. }
  890. }
  891. #endif
  892. } // end of SetBreath
  893. static int ApplyBreath(void)
  894. {//=========================
  895. int value = 0;
  896. #ifndef PLATFORM_RISCOS
  897. int noise;
  898. int ix;
  899. int amp;
  900. // use two random numbers, for alternate formants
  901. noise = (rand() & 0x3fff) - 0x2000;
  902. for(ix=1; ix < N_PEAKS; ix++)
  903. {
  904. if((amp = wvoice->breath[ix]) != 0)
  905. {
  906. amp *= (peaks[ix].height >> 14);
  907. value += int(resonator(&rbreath[ix],noise) * amp);
  908. }
  909. }
  910. #endif
  911. return (value);
  912. }
  913. int Wavegen()
  914. {//==========
  915. unsigned short waveph;
  916. unsigned short theta;
  917. int total;
  918. int h;
  919. int ix;
  920. int z, z1, z2;
  921. int echo;
  922. int ov;
  923. static int maxh, maxh2;
  924. int pk;
  925. signed char c;
  926. int sample;
  927. int amp;
  928. int modn_amp, modn_period;
  929. static int agc = 256;
  930. static int h_switch_sign = 0;
  931. static int cycle_count = 0;
  932. static int amplitude2 = 0; // adjusted for pitch
  933. // continue until the output buffer is full, or
  934. // the required number of samples have been produced
  935. for(;;)
  936. {
  937. if((end_wave==0) && (samplecount==nsamples))
  938. return(0);
  939. if((samplecount & 0x3f) == 0)
  940. {
  941. // every 64 samples, adjust the parameters
  942. if(samplecount == 0)
  943. {
  944. hswitch = 0;
  945. harmspect = hspect[0];
  946. maxh2 = PeaksToHarmspect(peaks, wdata.pitch<<4, hspect[0], 0);
  947. // adjust amplitude to compensate for fewer harmonics at higher pitch
  948. amplitude2 = (wdata.amplitude * wdata.pitch)/(100 << 11);
  949. // switch sign of harmonics above about 900Hz, to reduce max peak amplitude
  950. h_switch_sign = 890 / (wdata.pitch >> 12);
  951. }
  952. else
  953. AdvanceParameters();
  954. // pitch is Hz<<12
  955. phaseinc = (wdata.pitch>>7) * PHASE_INC_FACTOR;
  956. cycle_samples = samplerate/(wdata.pitch >> 12); // sr/(pitch*2)
  957. hf_factor = wdata.pitch >> 11;
  958. maxh = maxh2;
  959. harmspect = hspect[hswitch];
  960. hswitch ^= 1;
  961. maxh2 = PeaksToHarmspect(peaks, wdata.pitch<<4, hspect[hswitch], 1);
  962. SetBreath();
  963. }
  964. else
  965. if((samplecount & 0x07) == 0)
  966. {
  967. for(h=1; h<N_LOWHARM && h<=maxh2 && h<=maxh; h++)
  968. {
  969. harmspect[h] += harm_inc[h];
  970. }
  971. // bring automctic gain control back towards unity
  972. if(agc < 256) agc++;
  973. }
  974. samplecount++;
  975. if(wavephase > 0)
  976. {
  977. wavephase += phaseinc;
  978. if(wavephase < 0)
  979. {
  980. // sign has changed, reached a quiet point in the waveform
  981. cbytes = wavemult_offset - (cycle_samples)/2;
  982. if(samplecount > nsamples)
  983. return(0);
  984. cycle_count++;
  985. for(pk=wvoice->n_harmonic_peaks+1; pk<N_PEAKS; pk++)
  986. {
  987. // find the nearest harmonic for HF peaks where we don't use shape
  988. peak_harmonic[pk] = peaks[pk].freq / (wdata.pitch*16);
  989. }
  990. // adjust amplitude to compensate for fewer harmonics at higher pitch
  991. amplitude2 = (wdata.amplitude * wdata.pitch)/(100 << 11);
  992. if(glottal_flag > 0)
  993. {
  994. if(glottal_flag == 3)
  995. {
  996. if((nsamples-samplecount) < (cycle_samples*2))
  997. {
  998. // Vowel before glottal-stop.
  999. // This is the start of the penultimate cycle, reduce its amplitude
  1000. glottal_flag = 2;
  1001. amplitude2 = (amplitude2 * glottal_reduce)/256;
  1002. }
  1003. }
  1004. else
  1005. if(glottal_flag == 4)
  1006. {
  1007. // Vowel following a glottal-stop.
  1008. // This is the start of the second cycle, reduce its amplitude
  1009. glottal_flag = 2;
  1010. amplitude2 = (amplitude2 * glottal_reduce)/256;
  1011. }
  1012. else
  1013. {
  1014. glottal_flag--;
  1015. }
  1016. }
  1017. if(amplitude_env != NULL)
  1018. {
  1019. // amplitude envelope is only used for creaky voice effect on certain vowels/tones
  1020. if((ix = amp_ix>>8) > 127) ix = 127;
  1021. amp = amplitude_env[ix];
  1022. amplitude2 = (amplitude2 * amp)/128;
  1023. // if(amp < 255)
  1024. // modulation_type = 7;
  1025. }
  1026. // introduce roughness into the sound by reducing the amplitude of
  1027. modn_period = 0;
  1028. if(voice->roughness < N_ROUGHNESS)
  1029. {
  1030. modn_period = modulation_tab[voice->roughness][modulation_type];
  1031. modn_amp = modn_period & 0xf;
  1032. modn_period = modn_period >> 4;
  1033. }
  1034. if(modn_period != 0)
  1035. {
  1036. if(modn_period==0xf)
  1037. {
  1038. // just once */
  1039. amplitude2 = (amplitude2 * modn_amp)/16;
  1040. modulation_type = 0;
  1041. }
  1042. else
  1043. {
  1044. // reduce amplitude every [modn_period} cycles
  1045. if((cycle_count % modn_period)==0)
  1046. amplitude2 = (amplitude2 * modn_amp)/16;
  1047. }
  1048. }
  1049. }
  1050. }
  1051. else
  1052. {
  1053. wavephase += phaseinc;
  1054. }
  1055. waveph = (unsigned short)(wavephase >> 16);
  1056. total = 0;
  1057. // apply HF peaks, formants 6,7,8
  1058. // add a single harmonic and then spread this my multiplying by a
  1059. // window. This is to reduce the processing power needed to add the
  1060. // higher frequence harmonics.
  1061. cbytes++;
  1062. if(cbytes >=0 && cbytes<wavemult_max)
  1063. {
  1064. for(pk=wvoice->n_harmonic_peaks+1; pk<N_PEAKS; pk++)
  1065. {
  1066. theta = peak_harmonic[pk] * waveph;
  1067. total += (long)sin_tab[theta >> 5] * peak_height[pk];
  1068. }
  1069. // spread the peaks by multiplying by a window
  1070. total = (long)(total / hf_factor) * wavemult[cbytes];
  1071. }
  1072. // apply main peaks, formants 0 to 5
  1073. #ifdef USE_ASSEMBLER_1
  1074. // use an optimised routine for this loop, if available
  1075. total += AddSineWaves(waveph, h_switch_sign, maxh, harmspect); // call an assembler code routine
  1076. #else
  1077. theta = waveph;
  1078. for(h=1; h<=h_switch_sign; h++)
  1079. {
  1080. total += (int(sin_tab[theta >> 5]) * harmspect[h]);
  1081. theta += waveph;
  1082. }
  1083. while(h<=maxh)
  1084. {
  1085. total -= (int(sin_tab[theta >> 5]) * harmspect[h]);
  1086. theta += waveph;
  1087. h++;
  1088. }
  1089. #endif
  1090. if(voicing != 64)
  1091. {
  1092. total = (total >> 6) * voicing;
  1093. }
  1094. #ifndef PLATFORM_RISCOS
  1095. if(wvoice->breath[0])
  1096. {
  1097. total += ApplyBreath();
  1098. }
  1099. #endif
  1100. // mix with sampled wave if required
  1101. z2 = 0;
  1102. if(wdata.mix_wavefile_ix < wdata.n_mix_wavefile)
  1103. {
  1104. if(wdata.mix_wave_scale == 0)
  1105. {
  1106. // a 16 bit sample
  1107. c = wdata.mix_wavefile[wdata.mix_wavefile_ix+wdata.mix_wavefile_offset+1];
  1108. sample = wdata.mix_wavefile[wdata.mix_wavefile_ix+wdata.mix_wavefile_offset] + (c * 256);
  1109. wdata.mix_wavefile_ix += 2;
  1110. }
  1111. else
  1112. {
  1113. // a 8 bit sample, scaled
  1114. sample = (signed char)wdata.mix_wavefile[wdata.mix_wavefile_offset+wdata.mix_wavefile_ix++] * wdata.mix_wave_scale;
  1115. }
  1116. z2 = (sample * wdata.amplitude_v) >> 10;
  1117. z2 = (z2 * wdata.mix_wave_amp)/32;
  1118. if((wdata.mix_wavefile_ix + wdata.mix_wavefile_offset) >= wdata.mix_wavefile_max) // reached the end of available WAV data
  1119. wdata.mix_wavefile_offset -= (wdata.mix_wavefile_max*3)/4;
  1120. }
  1121. z1 = z2 + (((total>>8) * amplitude2) >> 13);
  1122. echo = (echo_buf[echo_tail++] * echo_amp);
  1123. z1 += echo >> 8;
  1124. if(echo_tail >= N_ECHO_BUF)
  1125. echo_tail=0;
  1126. z = (z1 * agc) >> 8;
  1127. // check for overflow, 16bit signed samples
  1128. if(z >= 32768)
  1129. {
  1130. ov = 8388608/z1 - 1; // 8388608 is 2^23, i.e. max value * 256
  1131. if(ov < agc) agc = ov; // set agc to number of 1/256ths to multiply the sample by
  1132. z = (z1 * agc) >> 8; // reduce sample by agc value to prevent overflow
  1133. }
  1134. else
  1135. if(z <= -32768)
  1136. {
  1137. ov = -8388608/z1 - 1;
  1138. if(ov < agc) agc = ov;
  1139. z = (z1 * agc) >> 8;
  1140. }
  1141. *out_ptr++ = z;
  1142. *out_ptr++ = z >> 8;
  1143. echo_buf[echo_head++] = z;
  1144. if(echo_head >= N_ECHO_BUF)
  1145. echo_head = 0;
  1146. if(out_ptr >= out_end)
  1147. return(1);
  1148. }
  1149. return(0);
  1150. } // end of Wavegen
  1151. static int PlaySilence(int length, int resume)
  1152. {//===========================================
  1153. static int n_samples;
  1154. int value=0;
  1155. nsamples = 0;
  1156. samplecount = 0;
  1157. wavephase = 0x7fffffff;
  1158. if(length == 0)
  1159. return(0);
  1160. if(resume==0)
  1161. n_samples = length;
  1162. while(n_samples-- > 0)
  1163. {
  1164. value = (echo_buf[echo_tail++] * echo_amp) >> 8;
  1165. if(echo_tail >= N_ECHO_BUF)
  1166. echo_tail = 0;
  1167. *out_ptr++ = value;
  1168. *out_ptr++ = value >> 8;
  1169. echo_buf[echo_head++] = value;
  1170. if(echo_head >= N_ECHO_BUF)
  1171. echo_head = 0;
  1172. if(out_ptr >= out_end)
  1173. return(1);
  1174. }
  1175. return(0);
  1176. } // end of PlaySilence
  1177. static int PlayWave(int length, int resume, unsigned char *data, int scale, int amp)
  1178. {//=================================================================================
  1179. static int n_samples;
  1180. static int ix=0;
  1181. int value;
  1182. signed char c;
  1183. if(resume==0)
  1184. {
  1185. n_samples = length;
  1186. ix = 0;
  1187. }
  1188. nsamples = 0;
  1189. samplecount = 0;
  1190. while(n_samples-- > 0)
  1191. {
  1192. if(scale == 0)
  1193. {
  1194. // 16 bits data
  1195. c = data[ix+1];
  1196. value = data[ix] + (c * 256);
  1197. ix+=2;
  1198. }
  1199. else
  1200. {
  1201. // 8 bit data, shift by the specified scale factor
  1202. value = (signed char)data[ix++] * scale;
  1203. }
  1204. value *= (consonant_amp * general_amplitude); // reduce strength of consonant
  1205. value = value >> 10;
  1206. value = (value * amp)/32;
  1207. value += ((echo_buf[echo_tail++] * echo_amp) >> 8);
  1208. if(value > 32767)
  1209. value = 32768;
  1210. else
  1211. if(value < -32768)
  1212. value = -32768;
  1213. if(echo_tail >= N_ECHO_BUF)
  1214. echo_tail = 0;
  1215. out_ptr[0] = value;
  1216. out_ptr[1] = value >> 8;
  1217. out_ptr+=2;
  1218. echo_buf[echo_head++] = (value*3)/4;
  1219. if(echo_head >= N_ECHO_BUF)
  1220. echo_head = 0;
  1221. if(out_ptr >= out_end)
  1222. return(1);
  1223. }
  1224. return(0);
  1225. }
  1226. static int SetWithRange0(int value, int max)
  1227. {//=========================================
  1228. if(value < 0)
  1229. return(0);
  1230. if(value > max)
  1231. return(max);
  1232. return(value);
  1233. }
  1234. void SetEmbedded(int control, int value)
  1235. {//=====================================
  1236. // there was an embedded command in the text at this point
  1237. int sign=0;
  1238. int command;
  1239. int ix;
  1240. int factor;
  1241. int pitch_value;
  1242. command = control & 0x1f;
  1243. if((control & 0x60) == 0x60)
  1244. sign = -1;
  1245. else
  1246. if((control & 0x60) == 0x40)
  1247. sign = 1;
  1248. if(command < N_EMBEDDED_VALUES)
  1249. {
  1250. if(sign == 0)
  1251. embedded_value[command] = value;
  1252. else
  1253. embedded_value[command] += (value * sign);
  1254. embedded_value[command] = SetWithRange0(embedded_value[command],embedded_max[command]);
  1255. }
  1256. switch(command)
  1257. {
  1258. case EMBED_T:
  1259. WavegenSetEcho(); // and drop through to case P
  1260. case EMBED_P:
  1261. // adjust formants to give better results for a different voice pitch
  1262. if((pitch_value = embedded_value[EMBED_P]) > MAX_PITCH_VALUE)
  1263. pitch_value = MAX_PITCH_VALUE;
  1264. factor = 256 + (25 * (pitch_value - 50))/50;
  1265. for(ix=0; ix<=5; ix++)
  1266. {
  1267. wvoice->freq[ix] = (wvoice->freq2[ix] * factor)/256;
  1268. }
  1269. factor = embedded_value[EMBED_T]*3;
  1270. wvoice->height[0] = (wvoice->height2[0] * (256 - factor*2))/256;
  1271. wvoice->height[1] = (wvoice->height2[1] * (256 - factor))/256;
  1272. break;
  1273. case EMBED_A: // amplitude
  1274. general_amplitude = GetAmplitude();
  1275. break;
  1276. case EMBED_F: // emphasiis
  1277. general_amplitude = GetAmplitude();
  1278. break;
  1279. case EMBED_H:
  1280. WavegenSetEcho();
  1281. break;
  1282. }
  1283. }
  1284. void WavegenSetVoice(voice_t *v)
  1285. {//=============================
  1286. static voice_t v2;
  1287. memcpy(&v2,v,sizeof(v2));
  1288. wvoice = &v2;
  1289. if(v->peak_shape==0)
  1290. pk_shape = pk_shape1;
  1291. else
  1292. pk_shape = pk_shape2;
  1293. consonant_amp = (v->consonant_amp * 26) /100;
  1294. if(samplerate <= 11000)
  1295. {
  1296. consonant_amp = consonant_amp*2; // emphasize consonants at low sample rates
  1297. option_harmonic1 = 6;
  1298. }
  1299. WavegenSetEcho();
  1300. MarkerEvent(espeakEVENT_SAMPLERATE,0,wvoice->samplerate,out_ptr);
  1301. // WVoiceChanged(wvoice);
  1302. }
  1303. static void SetAmplitude(int length, unsigned char *amp_env, int value)
  1304. {//====================================================================
  1305. amp_ix = 0;
  1306. if(length==0)
  1307. amp_inc = 0;
  1308. else
  1309. amp_inc = (256 * ENV_LEN * STEPSIZE)/length;
  1310. wdata.amplitude = (value * general_amplitude)/16;
  1311. wdata.amplitude_v = (wdata.amplitude * wvoice->consonant_ampv * 15)/100; // for wave mixed with voiced sounds
  1312. amplitude_env = amp_env;
  1313. }
  1314. void SetPitch2(voice_t *voice, int pitch1, int pitch2, int *pitch_base, int *pitch_range)
  1315. {//======================================================================================
  1316. int x;
  1317. int base;
  1318. int range;
  1319. int pitch_value;
  1320. if(pitch1 > pitch2)
  1321. {
  1322. x = pitch1; // swap values
  1323. pitch1 = pitch2;
  1324. pitch2 = x;
  1325. }
  1326. if((pitch_value = embedded_value[EMBED_P]) > MAX_PITCH_VALUE)
  1327. pitch_value = MAX_PITCH_VALUE;
  1328. pitch_value -= embedded_value[EMBED_T]; // adjust tone for announcing punctuation
  1329. if(pitch_value < 0)
  1330. pitch_value = 0;
  1331. base = (voice->pitch_base * pitch_adjust_tab[pitch_value])/128;
  1332. range = (voice->pitch_range * embedded_value[EMBED_R])/50;
  1333. // compensate for change in pitch when the range is narrowed or widened
  1334. base -= (range - voice->pitch_range)*18;
  1335. *pitch_base = base + (pitch1 * range)/2;
  1336. *pitch_range = base + (pitch2 * range)/2 - *pitch_base;
  1337. }
  1338. void SetPitch(int length, unsigned char *env, int pitch1, int pitch2)
  1339. {//==================================================================
  1340. // length in samples
  1341. #ifdef LOG_FRAMES
  1342. if(option_log_frames)
  1343. {
  1344. f_log=fopen("log-espeakedit","a");
  1345. if(f_log != NULL)
  1346. {
  1347. fprintf(f_log," pitch %3d %3d %3dmS\n",pitch1,pitch2,(length*1000)/samplerate);
  1348. fclose(f_log);
  1349. f_log=NULL;
  1350. }
  1351. }
  1352. #endif
  1353. if((wdata.pitch_env = env)==NULL)
  1354. wdata.pitch_env = env_fall; // default
  1355. wdata.pitch_ix = 0;
  1356. if(length==0)
  1357. wdata.pitch_inc = 0;
  1358. else
  1359. wdata.pitch_inc = (256 * ENV_LEN * STEPSIZE)/length;
  1360. SetPitch2(wvoice, pitch1, pitch2, &wdata.pitch_base, &wdata.pitch_range);
  1361. // set initial pitch
  1362. wdata.pitch = ((wdata.pitch_env[0] * wdata.pitch_range) >>8) + wdata.pitch_base; // Hz << 12
  1363. flutter_amp = wvoice->flutter;
  1364. } // end of SetPitch
  1365. void SetSynth(int length, int modn, frame_t *fr1, frame_t *fr2, voice_t *v)
  1366. {//========================================================================
  1367. int ix;
  1368. DOUBLEX next;
  1369. int length2;
  1370. int length4;
  1371. int qix;
  1372. int cmd;
  1373. static int glottal_reduce_tab1[4] = {0x30, 0x30, 0x40, 0x50}; // vowel before [?], amp * 1/256
  1374. // static int glottal_reduce_tab1[4] = {0x30, 0x40, 0x50, 0x60}; // vowel before [?], amp * 1/256
  1375. static int glottal_reduce_tab2[4] = {0x90, 0xa0, 0xb0, 0xc0}; // vowel after [?], amp * 1/256
  1376. #ifdef LOG_FRAMES
  1377. if(option_log_frames)
  1378. {
  1379. f_log=fopen("log-espeakedit","a");
  1380. if(f_log != NULL)
  1381. {
  1382. fprintf(f_log,"%3dmS %3d %3d %4d %4d (%3d %3d %3d %3d) to %3d %3d %4d %4d (%3d %3d %3d %3d)\n",length*1000/samplerate,
  1383. fr1->ffreq[0],fr1->ffreq[1],fr1->ffreq[2],fr1->ffreq[3], fr1->fheight[0],fr1->fheight[1],fr1->fheight[2],fr1->fheight[3],
  1384. fr2->ffreq[0],fr2->ffreq[1],fr2->ffreq[2],fr2->ffreq[3], fr2->fheight[0],fr2->fheight[1],fr2->fheight[2],fr2->fheight[3] );
  1385. fclose(f_log);
  1386. f_log=NULL;
  1387. }
  1388. }
  1389. #endif
  1390. harm_sqrt_n = 0;
  1391. end_wave = 1;
  1392. // any additional information in the param1 ?
  1393. modulation_type = modn & 0xff;
  1394. glottal_flag = 0;
  1395. if(modn & 0x400)
  1396. {
  1397. glottal_flag = 3; // before a glottal stop
  1398. glottal_reduce = glottal_reduce_tab1[(modn >> 8) & 3];
  1399. }
  1400. if(modn & 0x800)
  1401. {
  1402. glottal_flag = 4; // after a glottal stop
  1403. glottal_reduce = glottal_reduce_tab2[(modn >> 8) & 3];
  1404. }
  1405. for(qix=wcmdq_head+1;;qix++)
  1406. {
  1407. if(qix >= N_WCMDQ) qix = 0;
  1408. if(qix == wcmdq_tail) break;
  1409. cmd = wcmdq[qix][0];
  1410. if(cmd==WCMD_SPECT)
  1411. {
  1412. end_wave = 0; // next wave generation is from another spectrum
  1413. break;
  1414. }
  1415. if((cmd==WCMD_WAVE) || (cmd==WCMD_PAUSE))
  1416. break; // next is not from spectrum, so continue until end of wave cycle
  1417. }
  1418. // round the length to a multiple of the stepsize
  1419. length2 = (length + STEPSIZE/2) & ~0x3f;
  1420. if(length2 == 0)
  1421. length2 = STEPSIZE;
  1422. // add this length to any left over from the previous synth
  1423. samplecount_start = samplecount;
  1424. nsamples += length2;
  1425. length4 = length2/4;
  1426. peaks[7].freq = (7800 * v->freq[7] + v->freqadd[7]*256) << 8;
  1427. peaks[8].freq = (9000 * v->freq[8] + v->freqadd[8]*256) << 8;
  1428. for(ix=0; ix < 8; ix++)
  1429. {
  1430. if(ix < 7)
  1431. {
  1432. peaks[ix].freq1 = (fr1->ffreq[ix] * v->freq[ix] + v->freqadd[ix]*256) << 8;
  1433. peaks[ix].freq = int(peaks[ix].freq1);
  1434. next = (fr2->ffreq[ix] * v->freq[ix] + v->freqadd[ix]*256) << 8;
  1435. peaks[ix].freq_inc = ((next - peaks[ix].freq1) * (STEPSIZE/4)) / length4; // lower headroom for fixed point math
  1436. }
  1437. peaks[ix].height1 = (fr1->fheight[ix] * v->height[ix]) << 6;
  1438. peaks[ix].height = int(peaks[ix].height1);
  1439. next = (fr2->fheight[ix] * v->height[ix]) << 6;
  1440. peaks[ix].height_inc = ((next - peaks[ix].height1) * STEPSIZE) / length2;
  1441. if(ix <= wvoice->n_harmonic_peaks)
  1442. {
  1443. peaks[ix].left1 = (fr1->fwidth[ix] * v->width[ix]) << 10;
  1444. peaks[ix].left = int(peaks[ix].left1);
  1445. next = (fr2->fwidth[ix] * v->width[ix]) << 10;
  1446. peaks[ix].left_inc = ((next - peaks[ix].left1) * STEPSIZE) / length2;
  1447. if(ix < 3)
  1448. {
  1449. peaks[ix].right1 = (fr1->fright[ix] * v->width[ix]) << 10;
  1450. peaks[ix].right = int(peaks[ix].right1);
  1451. next = (fr2->fright[ix] * v->width[ix]) << 10;
  1452. peaks[ix].right_inc = ((next - peaks[ix].right1) * STEPSIZE) / length2;
  1453. }
  1454. else
  1455. {
  1456. peaks[ix].right = peaks[ix].left;
  1457. }
  1458. }
  1459. }
  1460. } // end of SetSynth
  1461. static int Wavegen2(int length, int modulation, int resume, frame_t *fr1, frame_t *fr2)
  1462. {//====================================================================================
  1463. if(resume==0)
  1464. SetSynth(length, modulation, fr1, fr2, wvoice);
  1465. return(Wavegen());
  1466. }
  1467. void Write4Bytes(FILE *f, int value)
  1468. {//=================================
  1469. // Write 4 bytes to a file, least significant first
  1470. int ix;
  1471. for(ix=0; ix<4; ix++)
  1472. {
  1473. fputc(value & 0xff,f);
  1474. value = value >> 8;
  1475. }
  1476. }
  1477. int WavegenFill(int fill_zeros)
  1478. {//============================
  1479. // Pick up next wavegen commands from the queue
  1480. // return: 0 output buffer has been filled
  1481. // return: 1 input command queue is now empty
  1482. long *q;
  1483. int length;
  1484. int result;
  1485. static int resume=0;
  1486. static int echo_complete=0;
  1487. while(out_ptr < out_end)
  1488. {
  1489. if(WcmdqUsed() <= 0)
  1490. {
  1491. if(echo_complete > 0)
  1492. {
  1493. // continue to play silence until echo is completed
  1494. resume = PlaySilence(echo_complete,resume);
  1495. if(resume == 1)
  1496. return(0); // not yet finished
  1497. }
  1498. if(fill_zeros)
  1499. {
  1500. while(out_ptr < out_end)
  1501. *out_ptr++ = 0;
  1502. }
  1503. return(1); // queue empty, close sound channel
  1504. }
  1505. result = 0;
  1506. q = wcmdq[wcmdq_head];
  1507. length = q[1];
  1508. switch(q[0])
  1509. {
  1510. case WCMD_PITCH:
  1511. SetPitch(length,(unsigned char *)q[2],q[3] >> 16,q[3] & 0xffff);
  1512. break;
  1513. case WCMD_PAUSE:
  1514. if(resume==0)
  1515. {
  1516. echo_complete -= length;
  1517. }
  1518. wdata.n_mix_wavefile = 0;
  1519. KlattReset(1);
  1520. result = PlaySilence(length,resume);
  1521. break;
  1522. case WCMD_WAVE:
  1523. echo_complete = echo_length;
  1524. wdata.n_mix_wavefile = 0;
  1525. KlattReset(1);
  1526. result = PlayWave(length,resume,(unsigned char*)q[2], q[3] & 0xff, q[3] >> 8);
  1527. break;
  1528. case WCMD_WAVE2:
  1529. // wave file to be played at the same time as synthesis
  1530. wdata.mix_wave_amp = q[3] >> 8;
  1531. wdata.mix_wave_scale = q[3] & 0xff;
  1532. wdata.n_mix_wavefile = (length & 0xffff);
  1533. wdata.mix_wavefile_max = (length >> 16) & 0xffff;
  1534. if(wdata.mix_wave_scale == 0)
  1535. {
  1536. wdata.n_mix_wavefile *= 2;
  1537. wdata.mix_wavefile_max *= 2;
  1538. }
  1539. wdata.mix_wavefile_ix = 0;
  1540. wdata.mix_wavefile_offset = 0;
  1541. wdata.mix_wavefile = (unsigned char *)q[2];
  1542. break;
  1543. case WCMD_SPECT2: // as WCMD_SPECT but stop any concurrent wave file
  1544. wdata.n_mix_wavefile = 0; // ... and drop through to WCMD_SPECT case
  1545. case WCMD_SPECT:
  1546. echo_complete = echo_length;
  1547. result = Wavegen2(length & 0xffff,q[1] >> 16,resume,(frame_t *)q[2],(frame_t *)q[3]);
  1548. break;
  1549. #ifdef INCLUDE_KLATT
  1550. case WCMD_KLATT2: // as WCMD_SPECT but stop any concurrent wave file
  1551. wdata.n_mix_wavefile = 0; // ... and drop through to WCMD_SPECT case
  1552. case WCMD_KLATT:
  1553. echo_complete = echo_length;
  1554. result = Wavegen_Klatt2(length & 0xffff,q[1] >> 16,resume,(frame_t *)q[2],(frame_t *)q[3]);
  1555. break;
  1556. #endif
  1557. case WCMD_MARKER:
  1558. MarkerEvent(q[1],q[2],q[3],out_ptr);
  1559. #ifdef LOG_FRAMES
  1560. LogMarker(q[1],q[3]);
  1561. #endif
  1562. if(q[1] == 1)
  1563. {
  1564. current_source_index = q[2] & 0xffffff;
  1565. }
  1566. break;
  1567. case WCMD_AMPLITUDE:
  1568. SetAmplitude(length,(unsigned char *)q[2],q[3]);
  1569. break;
  1570. case WCMD_VOICE:
  1571. WavegenSetVoice((voice_t *)q[1]);
  1572. free((voice_t *)q[1]);
  1573. break;
  1574. case WCMD_EMBEDDED:
  1575. SetEmbedded(q[1],q[2]);
  1576. break;
  1577. case WCMD_MBROLA_DATA:
  1578. result = MbrolaFill(length, resume);
  1579. break;
  1580. }
  1581. if(result==0)
  1582. {
  1583. WcmdqIncHead();
  1584. resume=0;
  1585. }
  1586. else
  1587. {
  1588. resume=1;
  1589. }
  1590. }
  1591. return(0);
  1592. } // end of WavegenFill