eSpeak NG is an open source speech synthesizer that supports more than hundred languages and accents.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

klatt.c 32KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119
  1. /*
  2. * Copyright (C) 2008 by Jonathan Duddington
  3. * email: [email protected]
  4. * Copyright (C) 2013-2016 Reece H. Dunn
  5. *
  6. * Based on a re-implementation by:
  7. * (c) 1993,94 Jon Iles and Nick Ing-Simmons
  8. * of the Klatt cascade-parallel formant synthesizer
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License as published by
  12. * the Free Software Foundation; either version 3 of the License, or
  13. * (at your option) any later version.
  14. *
  15. * This program is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  18. * GNU General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU General Public License
  21. * along with this program; if not, see: <http://www.gnu.org/licenses/>.
  22. */
  23. // See URL: ftp://svr-ftp.eng.cam.ac.uk/pub/comp.speech/synthesis/klatt.3.04.tar.gz
  24. #include "config.h"
  25. #include <math.h>
  26. #include <stdint.h>
  27. #include <stdio.h>
  28. #include <stdlib.h>
  29. #include <string.h>
  30. #include <espeak-ng/espeak_ng.h>
  31. #include <espeak-ng/speak_lib.h>
  32. #include "klatt.h"
  33. #include "synthesize.h" // for frame_t, WGEN_DATA, STEPSIZE, N_KLATTP, echo...
  34. #include "voice.h" // for voice_t, N_PEAKS
  35. #ifdef INCLUDE_SPEECHPLAYER
  36. #include "sPlayer.h"
  37. #endif
  38. extern unsigned char *out_ptr;
  39. extern unsigned char *out_end;
  40. static int nsamples;
  41. static int sample_count;
  42. #ifdef _MSC_VER
  43. #define getrandom(min, max) ((rand()%(int)(((max)+1)-(min)))+(min))
  44. #else
  45. #define getrandom(min, max) ((rand()%(long)(((max)+1)-(min)))+(min))
  46. #endif
  47. // function prototypes for functions private to this file
  48. static void flutter(klatt_frame_ptr);
  49. static double sampled_source(int);
  50. static double impulsive_source(void);
  51. static double natural_source(void);
  52. static void pitch_synch_par_reset(klatt_frame_ptr);
  53. static double gen_noise(double);
  54. static double DBtoLIN(long);
  55. static void frame_init(klatt_frame_ptr);
  56. static void setabc(long, long, resonator_ptr);
  57. static void SetSynth_Klatt(int length, frame_t *fr1, frame_t *fr2, voice_t *v, int control);
  58. static void setzeroabc(long, long, resonator_ptr);
  59. static klatt_frame_t kt_frame;
  60. static klatt_global_t kt_globals;
  61. #define NUMBER_OF_SAMPLES 100
  62. static int scale_wav_tab[] = { 45, 38, 45, 45, 55, 45 }; // scale output from different voicing sources
  63. // For testing, this can be overwritten in KlattInit()
  64. static short natural_samples2[256] = {
  65. 2583, 2516, 2450, 2384, 2319, 2254, 2191, 2127,
  66. 2067, 2005, 1946, 1890, 1832, 1779, 1726, 1675,
  67. 1626, 1579, 1533, 1491, 1449, 1409, 1372, 1336,
  68. 1302, 1271, 1239, 1211, 1184, 1158, 1134, 1111,
  69. 1089, 1069, 1049, 1031, 1013, 996, 980, 965,
  70. 950, 936, 921, 909, 895, 881, 869, 855,
  71. 843, 830, 818, 804, 792, 779, 766, 754,
  72. 740, 728, 715, 702, 689, 676, 663, 651,
  73. 637, 626, 612, 601, 588, 576, 564, 552,
  74. 540, 530, 517, 507, 496, 485, 475, 464,
  75. 454, 443, 434, 424, 414, 404, 394, 385,
  76. 375, 366, 355, 347, 336, 328, 317, 308,
  77. 299, 288, 280, 269, 260, 250, 240, 231,
  78. 220, 212, 200, 192, 181, 172, 161, 152,
  79. 142, 133, 123, 113, 105, 94, 86, 76,
  80. 67, 57, 49, 39, 30, 22, 11, 4,
  81. -5, -14, -23, -32, -41, -50, -60, -69,
  82. -78, -87, -96, -107, -115, -126, -134, -144,
  83. -154, -164, -174, -183, -193, -203, -213, -222,
  84. -233, -242, -252, -262, -271, -281, -291, -301,
  85. -310, -320, -330, -339, -349, -357, -368, -377,
  86. -387, -397, -406, -417, -426, -436, -446, -456,
  87. -467, -477, -487, -499, -509, -521, -532, -543,
  88. -555, -567, -579, -591, -603, -616, -628, -641,
  89. -653, -666, -679, -692, -705, -717, -732, -743,
  90. -758, -769, -783, -795, -808, -820, -834, -845,
  91. -860, -872, -885, -898, -911, -926, -939, -955,
  92. -968, -986, -999, -1018, -1034, -1054, -1072, -1094,
  93. -1115, -1138, -1162, -1188, -1215, -1244, -1274, -1307,
  94. -1340, -1377, -1415, -1453, -1496, -1538, -1584, -1631,
  95. -1680, -1732, -1783, -1839, -1894, -1952, -2010, -2072,
  96. -2133, -2196, -2260, -2325, -2390, -2456, -2522, -2589,
  97. };
  98. static short natural_samples[100] = {
  99. -310, -400, 530, 356, 224, 89, 23, -10, -58, -16, 461, 599, 536, 701, 770,
  100. 605, 497, 461, 560, 404, 110, 224, 131, 104, -97, 155, 278, -154, -1165,
  101. -598, 737, 125, -592, 41, 11, -247, -10, 65, 92, 80, -304, 71, 167, -1, 122,
  102. 233, 161, -43, 278, 479, 485, 407, 266, 650, 134, 80, 236, 68, 260, 269, 179,
  103. 53, 140, 275, 293, 296, 104, 257, 152, 311, 182, 263, 245, 125, 314, 140, 44,
  104. 203, 230, -235, -286, 23, 107, 92, -91, 38, 464, 443, 176, 98, -784, -2449,
  105. -1891, -1045, -1600, -1462, -1384, -1261, -949, -730
  106. };
  107. /*
  108. function RESONATOR
  109. This is a generic resonator function. Internal memory for the resonator
  110. is stored in the globals structure.
  111. */
  112. static double resonator(resonator_ptr r, double input)
  113. {
  114. double x;
  115. x = (double)((double)r->a * (double)input + (double)r->b * (double)r->p1 + (double)r->c * (double)r->p2);
  116. r->p2 = (double)r->p1;
  117. r->p1 = (double)x;
  118. return (double)x;
  119. }
  120. /*
  121. function ANTIRESONATOR
  122. This is a generic anti-resonator function. The code is the same as resonator
  123. except that a,b,c need to be set with setzeroabc() and we save inputs in
  124. p1/p2 rather than outputs. There is currently only one of these - "rnz"
  125. Output = (rnz.a * input) + (rnz.b * oldin1) + (rnz.c * oldin2)
  126. */
  127. static double antiresonator(resonator_ptr r, double input)
  128. {
  129. register double x = (double)r->a * (double)input + (double)r->b * (double)r->p1 + (double)r->c * (double)r->p2;
  130. r->p2 = (double)r->p1;
  131. r->p1 = (double)input;
  132. return (double)x;
  133. }
  134. /*
  135. function FLUTTER
  136. This function adds F0 flutter, as specified in:
  137. "Analysis, synthesis and perception of voice quality variations among
  138. female and male talkers" D.H. Klatt and L.C. Klatt JASA 87(2) February 1990.
  139. Flutter is added by applying a quasi-random element constructed from three
  140. slowly varying sine waves.
  141. */
  142. static void flutter(klatt_frame_ptr frame)
  143. {
  144. static int time_count;
  145. double delta_f0;
  146. double fla, flb, flc, fld, fle;
  147. fla = (double)kt_globals.f0_flutter / 50;
  148. flb = (double)kt_globals.original_f0 / 100;
  149. flc = sin(M_PI*12.7*time_count); // because we are calling flutter() more frequently, every 2.9mS
  150. fld = sin(M_PI*7.1*time_count);
  151. fle = sin(M_PI*4.7*time_count);
  152. delta_f0 = fla * flb * (flc + fld + fle) * 10;
  153. frame->F0hz10 = frame->F0hz10 + (long)delta_f0;
  154. time_count++;
  155. }
  156. /*
  157. function SAMPLED_SOURCE
  158. Allows the use of a glottal excitation waveform sampled from a real
  159. voice.
  160. */
  161. static double sampled_source(int source_num)
  162. {
  163. int itemp;
  164. double ftemp;
  165. double result;
  166. double diff_value;
  167. int current_value;
  168. int next_value;
  169. double temp_diff;
  170. short *samples;
  171. if (source_num == 0) {
  172. samples = natural_samples;
  173. kt_globals.num_samples = 100;
  174. } else {
  175. samples = natural_samples2;
  176. kt_globals.num_samples = 256;
  177. }
  178. if (kt_globals.T0 != 0) {
  179. ftemp = (double)kt_globals.nper;
  180. ftemp = ftemp / kt_globals.T0;
  181. ftemp = ftemp * kt_globals.num_samples;
  182. itemp = (int)ftemp;
  183. temp_diff = ftemp - (double)itemp;
  184. current_value = samples[itemp];
  185. next_value = samples[itemp+1];
  186. diff_value = (double)next_value - (double)current_value;
  187. diff_value = diff_value * temp_diff;
  188. result = samples[itemp] + diff_value;
  189. result = result * kt_globals.sample_factor;
  190. } else
  191. result = 0;
  192. return result;
  193. }
  194. /*
  195. function PARWAVE
  196. Converts synthesis parameters to a waveform.
  197. */
  198. static int parwave(klatt_frame_ptr frame, WGEN_DATA *wdata)
  199. {
  200. double temp;
  201. int value;
  202. double outbypas;
  203. double out;
  204. long n4;
  205. double frics;
  206. double glotout;
  207. double aspiration;
  208. double casc_next_in;
  209. double par_glotout;
  210. static double noise;
  211. static double voice;
  212. static double vlast;
  213. static double glotlast;
  214. static double sourc;
  215. int ix;
  216. flutter(frame); // add f0 flutter
  217. // MAIN LOOP, for each output sample of current frame:
  218. for (kt_globals.ns = 0; kt_globals.ns < kt_globals.nspfr; kt_globals.ns++) {
  219. // Get low-passed random number for aspiration and frication noise
  220. noise = gen_noise(noise);
  221. // Amplitude modulate noise (reduce noise amplitude during
  222. // second half of glottal period) if voicing simultaneously present.
  223. if (kt_globals.nper > kt_globals.nmod)
  224. noise *= (double)0.5;
  225. // Compute frication noise
  226. frics = kt_globals.amp_frica * noise;
  227. // Compute voicing waveform. Run glottal source simulation at 4
  228. // times normal sample rate to minimize quantization noise in
  229. // period of female voice.
  230. for (n4 = 0; n4 < 4; n4++) {
  231. switch (kt_globals.glsource)
  232. {
  233. case IMPULSIVE:
  234. voice = impulsive_source();
  235. break;
  236. case NATURAL:
  237. voice = natural_source();
  238. break;
  239. case SAMPLED:
  240. voice = sampled_source(0);
  241. break;
  242. case SAMPLED2:
  243. voice = sampled_source(1);
  244. break;
  245. }
  246. // Reset period when counter 'nper' reaches T0
  247. if (kt_globals.nper >= kt_globals.T0) {
  248. kt_globals.nper = 0;
  249. pitch_synch_par_reset(frame);
  250. }
  251. // Low-pass filter voicing waveform before downsampling from 4*samrate
  252. // to samrate samples/sec. Resonator f=.09*samrate, bw=.06*samrate
  253. voice = resonator(&(kt_globals.rsn[RLP]), voice);
  254. // Increment counter that keeps track of 4*samrate samples per sec
  255. kt_globals.nper++;
  256. }
  257. if(kt_globals.glsource==5) {
  258. double v=(kt_globals.nper/(double)kt_globals.T0);
  259. v=(v*2)-1;
  260. voice=v*6000;
  261. }
  262. // Tilt spectrum of voicing source down by soft low-pass filtering, amount
  263. // of tilt determined by TLTdb
  264. voice = (voice * kt_globals.onemd) + (vlast * kt_globals.decay);
  265. vlast = voice;
  266. // Add breathiness during glottal open phase. Amount of breathiness
  267. // determined by parameter Aturb Use nrand rather than noise because
  268. // noise is low-passed.
  269. if (kt_globals.nper < kt_globals.nopen)
  270. voice += kt_globals.amp_breth * kt_globals.nrand;
  271. // Set amplitude of voicing
  272. glotout = kt_globals.amp_voice * voice;
  273. par_glotout = kt_globals.par_amp_voice * voice;
  274. // Compute aspiration amplitude and add to voicing source
  275. aspiration = kt_globals.amp_aspir * noise;
  276. glotout += aspiration;
  277. par_glotout += aspiration;
  278. // Cascade vocal tract, excited by laryngeal sources.
  279. // Nasal antiresonator, then formants FNP, F5, F4, F3, F2, F1
  280. out = 0;
  281. if (kt_globals.synthesis_model != ALL_PARALLEL) {
  282. casc_next_in = antiresonator(&(kt_globals.rsn[Rnz]), glotout);
  283. casc_next_in = resonator(&(kt_globals.rsn[Rnpc]), casc_next_in);
  284. casc_next_in = resonator(&(kt_globals.rsn[R8c]), casc_next_in);
  285. casc_next_in = resonator(&(kt_globals.rsn[R7c]), casc_next_in);
  286. casc_next_in = resonator(&(kt_globals.rsn[R6c]), casc_next_in);
  287. casc_next_in = resonator(&(kt_globals.rsn[R5c]), casc_next_in);
  288. casc_next_in = resonator(&(kt_globals.rsn[R4c]), casc_next_in);
  289. casc_next_in = resonator(&(kt_globals.rsn[R3c]), casc_next_in);
  290. casc_next_in = resonator(&(kt_globals.rsn[R2c]), casc_next_in);
  291. out = resonator(&(kt_globals.rsn[R1c]), casc_next_in);
  292. }
  293. // Excite parallel F1 and FNP by voicing waveform
  294. sourc = par_glotout; // Source is voicing plus aspiration
  295. // Standard parallel vocal tract Formants F6,F5,F4,F3,F2,
  296. // outputs added with alternating sign. Sound source for other
  297. // parallel resonators is frication plus first difference of
  298. // voicing waveform.
  299. out += resonator(&(kt_globals.rsn[R1p]), sourc);
  300. out += resonator(&(kt_globals.rsn[Rnpp]), sourc);
  301. sourc = frics + par_glotout - glotlast;
  302. glotlast = par_glotout;
  303. for (ix = R2p; ix <= R6p; ix++)
  304. out = resonator(&(kt_globals.rsn[ix]), sourc) - out;
  305. outbypas = kt_globals.amp_bypas * sourc;
  306. out = outbypas - out;
  307. out = resonator(&(kt_globals.rsn[Rout]), out);
  308. temp = (int)(out * wdata->amplitude * kt_globals.amp_gain0); // Convert back to integer
  309. // mix with a recorded WAV if required for this phoneme
  310. signed char c;
  311. int sample;
  312. if (wdata->mix_wavefile_ix < wdata->n_mix_wavefile) {
  313. if (wdata->mix_wave_scale == 0) {
  314. // a 16 bit sample
  315. c = wdata->mix_wavefile[wdata->mix_wavefile_ix+1];
  316. sample = wdata->mix_wavefile[wdata->mix_wavefile_ix] + (c * 256);
  317. wdata->mix_wavefile_ix += 2;
  318. } else {
  319. // a 8 bit sample, scaled
  320. sample = (signed char)wdata->mix_wavefile[wdata->mix_wavefile_ix++] * wdata->mix_wave_scale;
  321. }
  322. int z2 = sample * wdata->amplitude_v / 1024;
  323. z2 = (z2 * wdata->mix_wave_amp)/40;
  324. temp += z2;
  325. }
  326. if (kt_globals.fadein < 64) {
  327. temp = (temp * kt_globals.fadein) / 64;
  328. ++kt_globals.fadein;
  329. }
  330. // if fadeout is set, fade to zero over 64 samples, to avoid clicks at end of synthesis
  331. if (kt_globals.fadeout > 0) {
  332. kt_globals.fadeout--;
  333. temp = (temp * kt_globals.fadeout) / 64;
  334. if (kt_globals.fadeout == 0)
  335. kt_globals.fadein = 0;
  336. }
  337. value = (int)temp + ((echo_buf[echo_tail++]*echo_amp) >> 8);
  338. if (echo_tail >= N_ECHO_BUF)
  339. echo_tail = 0;
  340. if (value < -32768)
  341. value = -32768;
  342. if (value > 32767)
  343. value = 32767;
  344. *out_ptr++ = value;
  345. *out_ptr++ = value >> 8;
  346. echo_buf[echo_head++] = value;
  347. if (echo_head >= N_ECHO_BUF)
  348. echo_head = 0;
  349. sample_count++;
  350. if (out_ptr + 2 > out_end)
  351. return 1;
  352. }
  353. return 0;
  354. }
  355. void KlattReset(int control)
  356. {
  357. int r_ix;
  358. #ifdef INCLUDE_SPEECHPLAYER
  359. KlattResetSP();
  360. #endif
  361. if (control == 2) {
  362. // Full reset
  363. kt_globals.FLPhz = (950 * kt_globals.samrate) / 10000;
  364. kt_globals.BLPhz = (630 * kt_globals.samrate) / 10000;
  365. kt_globals.minus_pi_t = -M_PI / kt_globals.samrate;
  366. kt_globals.two_pi_t = -2.0 * kt_globals.minus_pi_t;
  367. setabc(kt_globals.FLPhz, kt_globals.BLPhz, &(kt_globals.rsn[RLP]));
  368. }
  369. if (control > 0) {
  370. kt_globals.nper = 0;
  371. kt_globals.T0 = 0;
  372. kt_globals.nopen = 0;
  373. kt_globals.nmod = 0;
  374. for (r_ix = RGL; r_ix < N_RSN; r_ix++) {
  375. kt_globals.rsn[r_ix].p1 = 0;
  376. kt_globals.rsn[r_ix].p2 = 0;
  377. }
  378. }
  379. for (r_ix = 0; r_ix <= R6p; r_ix++) {
  380. kt_globals.rsn[r_ix].p1 = 0;
  381. kt_globals.rsn[r_ix].p2 = 0;
  382. }
  383. }
  384. /*
  385. function FRAME_INIT
  386. Use parameters from the input frame to set up resonator coefficients.
  387. */
  388. static void frame_init(klatt_frame_ptr frame)
  389. {
  390. double amp_par[7];
  391. static double amp_par_factor[7] = { 0.6, 0.4, 0.15, 0.06, 0.04, 0.022, 0.03 };
  392. long Gain0_tmp;
  393. int ix;
  394. kt_globals.original_f0 = frame->F0hz10 / 10;
  395. frame->AVdb_tmp = frame->AVdb - 7;
  396. if (frame->AVdb_tmp < 0)
  397. frame->AVdb_tmp = 0;
  398. kt_globals.amp_aspir = DBtoLIN(frame->ASP) * 0.05;
  399. kt_globals.amp_frica = DBtoLIN(frame->AF) * 0.25;
  400. kt_globals.par_amp_voice = DBtoLIN(frame->AVpdb);
  401. kt_globals.amp_bypas = DBtoLIN(frame->AB) * 0.05;
  402. for (ix = 0; ix <= 6; ix++) {
  403. // parallel amplitudes F1 to F6, and parallel nasal pole
  404. amp_par[ix] = DBtoLIN(frame->Ap[ix]) * amp_par_factor[ix];
  405. }
  406. Gain0_tmp = frame->Gain0 - 3;
  407. if (Gain0_tmp <= 0)
  408. Gain0_tmp = 57;
  409. kt_globals.amp_gain0 = DBtoLIN(Gain0_tmp) / kt_globals.scale_wav;
  410. // Set coefficients of variable cascade resonators
  411. for (ix = 1; ix <= 9; ix++) {
  412. // formants 1 to 8, plus nasal pole
  413. setabc(frame->Fhz[ix], frame->Bhz[ix], &(kt_globals.rsn[ix]));
  414. if (ix <= 5) {
  415. setabc(frame->Fhz_next[ix], frame->Bhz_next[ix], &(kt_globals.rsn_next[ix]));
  416. kt_globals.rsn[ix].a_inc = (kt_globals.rsn_next[ix].a - kt_globals.rsn[ix].a) / 64.0;
  417. kt_globals.rsn[ix].b_inc = (kt_globals.rsn_next[ix].b - kt_globals.rsn[ix].b) / 64.0;
  418. kt_globals.rsn[ix].c_inc = (kt_globals.rsn_next[ix].c - kt_globals.rsn[ix].c) / 64.0;
  419. }
  420. }
  421. // nasal zero anti-resonator
  422. setzeroabc(frame->Fhz[F_NZ], frame->Bhz[F_NZ], &(kt_globals.rsn[Rnz]));
  423. setzeroabc(frame->Fhz_next[F_NZ], frame->Bhz_next[F_NZ], &(kt_globals.rsn_next[Rnz]));
  424. kt_globals.rsn[F_NZ].a_inc = (kt_globals.rsn_next[F_NZ].a - kt_globals.rsn[F_NZ].a) / 64.0;
  425. kt_globals.rsn[F_NZ].b_inc = (kt_globals.rsn_next[F_NZ].b - kt_globals.rsn[F_NZ].b) / 64.0;
  426. kt_globals.rsn[F_NZ].c_inc = (kt_globals.rsn_next[F_NZ].c - kt_globals.rsn[F_NZ].c) / 64.0;
  427. // Set coefficients of parallel resonators, and amplitude of outputs
  428. for (ix = 0; ix <= 6; ix++) {
  429. setabc(frame->Fhz[ix], frame->Bphz[ix], &(kt_globals.rsn[Rparallel+ix]));
  430. kt_globals.rsn[Rparallel+ix].a *= amp_par[ix];
  431. }
  432. // output low-pass filter
  433. setabc((long)0.0, (long)(kt_globals.samrate/2), &(kt_globals.rsn[Rout]));
  434. }
  435. /*
  436. function IMPULSIVE_SOURCE
  437. Generate a low pass filtered train of impulses as an approximation of
  438. a natural excitation waveform. Low-pass filter the differentiated impulse
  439. with a critically-damped second-order filter, time constant proportional
  440. to Kopen.
  441. */
  442. static double impulsive_source()
  443. {
  444. static double doublet[] = { 0.0, 13000000.0, -13000000.0 };
  445. static double vwave;
  446. if (kt_globals.nper < 3)
  447. vwave = doublet[kt_globals.nper];
  448. else
  449. vwave = 0.0;
  450. return resonator(&(kt_globals.rsn[RGL]), vwave);
  451. }
  452. /*
  453. function NATURAL_SOURCE
  454. Vwave is the differentiated glottal flow waveform, there is a weak
  455. spectral zero around 800 Hz, magic constants a,b reset pitch synchronously.
  456. */
  457. static double natural_source()
  458. {
  459. double lgtemp;
  460. static double vwave;
  461. if (kt_globals.nper < kt_globals.nopen) {
  462. kt_globals.pulse_shape_a -= kt_globals.pulse_shape_b;
  463. vwave += kt_globals.pulse_shape_a;
  464. lgtemp = vwave * 0.028;
  465. return lgtemp;
  466. }
  467. vwave = 0.0;
  468. return 0.0;
  469. }
  470. /*
  471. function PITCH_SYNC_PAR_RESET
  472. Reset selected parameters pitch-synchronously.
  473. Constant B0 controls shape of glottal pulse as a function
  474. of desired duration of open phase N0
  475. (Note that N0 is specified in terms of 40,000 samples/sec of speech)
  476. Assume voicing waveform V(t) has form: k1 t**2 - k2 t**3
  477. If the radiation characterivative, a temporal derivative
  478. is folded in, and we go from continuous time to discrete
  479. integers n: dV/dt = vwave[n]
  480. = sum over i=1,2,...,n of { a - (i * b) }
  481. = a n - b/2 n**2
  482. where the constants a and b control the detailed shape
  483. and amplitude of the voicing waveform over the open
  484. potion of the voicing cycle "nopen".
  485. Let integral of dV/dt have no net dc flow --> a = (b * nopen) / 3
  486. Let maximum of dUg(n)/dn be constant --> b = gain / (nopen * nopen)
  487. meaning as nopen gets bigger, V has bigger peak proportional to n
  488. Thus, to generate the table below for 40 <= nopen <= 263:
  489. B0[nopen - 40] = 1920000 / (nopen * nopen)
  490. */
  491. static void pitch_synch_par_reset(klatt_frame_ptr frame)
  492. {
  493. long temp;
  494. double temp1;
  495. static long skew;
  496. static short B0[224] = {
  497. 1200, 1142, 1088, 1038, 991, 948, 907, 869, 833, 799, 768, 738, 710, 683, 658,
  498. 634, 612, 590, 570, 551, 533, 515, 499, 483, 468, 454, 440, 427, 415, 403,
  499. 391, 380, 370, 360, 350, 341, 332, 323, 315, 307, 300, 292, 285, 278, 272,
  500. 265, 259, 253, 247, 242, 237, 231, 226, 221, 217, 212, 208, 204, 199, 195,
  501. 192, 188, 184, 180, 177, 174, 170, 167, 164, 161, 158, 155, 153, 150, 147,
  502. 145, 142, 140, 137, 135, 133, 131, 128, 126, 124, 122, 120, 119, 117, 115,
  503. 113, 111, 110, 108, 106, 105, 103, 102, 100, 99, 97, 96, 95, 93, 92, 91, 90,
  504. 88, 87, 86, 85, 84, 83, 82, 80, 79, 78, 77, 76, 75, 75, 74, 73, 72, 71,
  505. 70, 69, 68, 68, 67, 66, 65, 64, 64, 63, 62, 61, 61, 60, 59, 59, 58, 57,
  506. 57, 56, 56, 55, 55, 54, 54, 53, 53, 52, 52, 51, 51, 50, 50, 49, 49, 48, 48,
  507. 47, 47, 46, 46, 45, 45, 44, 44, 43, 43, 42, 42, 41, 41, 41, 41, 40, 40,
  508. 39, 39, 38, 38, 38, 38, 37, 37, 36, 36, 36, 36, 35, 35, 35, 35, 34, 34, 33,
  509. 33, 33, 33, 32, 32, 32, 32, 31, 31, 31, 31, 30, 30, 30, 30, 29, 29, 29, 29,
  510. 28, 28, 28, 28, 27, 27
  511. };
  512. if (frame->F0hz10 > 0) {
  513. // T0 is 4* the number of samples in one pitch period
  514. kt_globals.T0 = (40 * kt_globals.samrate) / frame->F0hz10;
  515. kt_globals.amp_voice = DBtoLIN(frame->AVdb_tmp);
  516. // Duration of period before amplitude modulation
  517. kt_globals.nmod = kt_globals.T0;
  518. if (frame->AVdb_tmp > 0)
  519. kt_globals.nmod >>= 1;
  520. // Breathiness of voicing waveform
  521. kt_globals.amp_breth = DBtoLIN(frame->Aturb) * 0.1;
  522. // Set open phase of glottal period where 40 <= open phase <= 263
  523. kt_globals.nopen = 4 * frame->Kopen;
  524. if ((kt_globals.glsource == IMPULSIVE) && (kt_globals.nopen > 263))
  525. kt_globals.nopen = 263;
  526. if (kt_globals.nopen >= (kt_globals.T0-1))
  527. kt_globals.nopen = kt_globals.T0 - 2;
  528. if (kt_globals.nopen < 40) {
  529. // F0 max = 1000 Hz
  530. kt_globals.nopen = 40;
  531. }
  532. // Reset a & b, which determine shape of "natural" glottal waveform
  533. kt_globals.pulse_shape_b = B0[kt_globals.nopen-40];
  534. kt_globals.pulse_shape_a = (kt_globals.pulse_shape_b * kt_globals.nopen) * 0.333;
  535. // Reset width of "impulsive" glottal pulse
  536. temp = kt_globals.samrate / kt_globals.nopen;
  537. setabc((long)0, temp, &(kt_globals.rsn[RGL]));
  538. // Make gain at F1 about constant
  539. temp1 = kt_globals.nopen *.00833;
  540. kt_globals.rsn[RGL].a *= temp1 * temp1;
  541. // Truncate skewness so as not to exceed duration of closed phase
  542. // of glottal period.
  543. temp = kt_globals.T0 - kt_globals.nopen;
  544. if (frame->Kskew > temp)
  545. frame->Kskew = temp;
  546. if (skew >= 0)
  547. skew = frame->Kskew;
  548. else
  549. skew = -frame->Kskew;
  550. // Add skewness to closed portion of voicing period
  551. kt_globals.T0 = kt_globals.T0 + skew;
  552. skew = -skew;
  553. } else {
  554. kt_globals.T0 = 4; // Default for f0 undefined
  555. kt_globals.amp_voice = 0.0;
  556. kt_globals.nmod = kt_globals.T0;
  557. kt_globals.amp_breth = 0.0;
  558. kt_globals.pulse_shape_a = 0.0;
  559. kt_globals.pulse_shape_b = 0.0;
  560. }
  561. // Reset these pars pitch synchronously or at update rate if f0=0
  562. if ((kt_globals.T0 != 4) || (kt_globals.ns == 0)) {
  563. // Set one-pole low-pass filter that tilts glottal source
  564. kt_globals.decay = (0.033 * frame->TLTdb);
  565. if (kt_globals.decay > 0.0)
  566. kt_globals.onemd = 1.0 - kt_globals.decay;
  567. else
  568. kt_globals.onemd = 1.0;
  569. }
  570. }
  571. /*
  572. function SETABC
  573. Convert formant frequencies and bandwidth into resonator difference
  574. equation constants.
  575. */
  576. static void setabc(long int f, long int bw, resonator_ptr rp)
  577. {
  578. double r;
  579. double arg;
  580. // Let r = exp(-pi bw t)
  581. arg = kt_globals.minus_pi_t * bw;
  582. r = exp(arg);
  583. // Let c = -r**2
  584. rp->c = -(r * r);
  585. // Let b = r * 2*cos(2 pi f t)
  586. arg = kt_globals.two_pi_t * f;
  587. rp->b = r * cos(arg) * 2.0;
  588. // Let a = 1.0 - b - c
  589. rp->a = 1.0 - rp->b - rp->c;
  590. }
  591. /*
  592. function SETZEROABC
  593. Convert formant frequencies and bandwidth into anti-resonator difference
  594. equation constants.
  595. */
  596. static void setzeroabc(long int f, long int bw, resonator_ptr rp)
  597. {
  598. double r;
  599. double arg;
  600. f = -f;
  601. // First compute ordinary resonator coefficients
  602. // Let r = exp(-pi bw t)
  603. arg = kt_globals.minus_pi_t * bw;
  604. r = exp(arg);
  605. // Let c = -r**2
  606. rp->c = -(r * r);
  607. // Let b = r * 2*cos(2 pi f t)
  608. arg = kt_globals.two_pi_t * f;
  609. rp->b = r * cos(arg) * 2.;
  610. // Let a = 1.0 - b - c
  611. rp->a = 1.0 - rp->b - rp->c;
  612. // Now convert to antiresonator coefficients (a'=1/a, b'=b/a, c'=c/a)
  613. // If f == 0 then rp->a gets set to 0 which makes a'=1/a set a', b' and c' to
  614. // INF, causing an audible sound spike when triggered (e.g. apiration with the
  615. // nasal register set to f=0, bw=0).
  616. if (rp->a != 0) {
  617. // Now convert to antiresonator coefficients (a'=1/a, b'=b/a, c'=c/a)
  618. rp->a = 1.0 / rp->a;
  619. rp->c *= -rp->a;
  620. rp->b *= -rp->a;
  621. }
  622. }
  623. /*
  624. function GEN_NOISE
  625. Random number generator (return a number between -8191 and +8191)
  626. Noise spectrum is tilted down by soft low-pass filter having a pole near
  627. the origin in the z-plane, i.e. output = input + (0.75 * lastoutput)
  628. */
  629. static double gen_noise(double noise)
  630. {
  631. long temp;
  632. static double nlast;
  633. temp = (long)getrandom(-8191, 8191);
  634. kt_globals.nrand = (long)temp;
  635. noise = kt_globals.nrand + (0.75 * nlast);
  636. nlast = noise;
  637. return noise;
  638. }
  639. /*
  640. function DBTOLIN
  641. Convert from decibels to a linear scale factor
  642. Conversion table, db to linear, 87 dB --> 32767
  643. 86 dB --> 29491 (1 dB down = 0.5**1/6)
  644. ...
  645. 81 dB --> 16384 (6 dB down = 0.5)
  646. ...
  647. 0 dB --> 0
  648. The just noticeable difference for a change in intensity of a vowel
  649. is approximately 1 dB. Thus all amplitudes are quantized to 1 dB
  650. steps.
  651. */
  652. static double DBtoLIN(long dB)
  653. {
  654. static short amptable[88] = {
  655. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 7,
  656. 8, 9, 10, 11, 13, 14, 16, 18, 20, 22, 25, 28, 32,
  657. 35, 40, 45, 51, 57, 64, 71, 80, 90, 101, 114, 128,
  658. 142, 159, 179, 202, 227, 256, 284, 318, 359, 405,
  659. 455, 512, 568, 638, 719, 881, 911, 1024, 1137, 1276,
  660. 1438, 1622, 1823, 2048, 2273, 2552, 2875, 3244, 3645,
  661. 4096, 4547, 5104, 5751, 6488, 7291, 8192, 9093, 10207,
  662. 11502, 12976, 14582, 16384, 18350, 20644, 23429,
  663. 26214, 29491, 32767
  664. };
  665. if ((dB < 0) || (dB > 87))
  666. return 0;
  667. return (double)(amptable[dB]) * 0.001;
  668. }
  669. static klatt_peaks_t peaks[N_PEAKS];
  670. static int end_wave;
  671. static int klattp[N_KLATTP];
  672. static double klattp1[N_KLATTP];
  673. static double klattp_inc[N_KLATTP];
  674. int Wavegen_Klatt(int length, int resume, frame_t *fr1, frame_t *fr2, WGEN_DATA *wdata, voice_t *wvoice)
  675. {
  676. #ifdef INCLUDE_SPEECHPLAYER
  677. if(wvoice->klattv[0] == 6)
  678. return Wavegen_KlattSP(wdata, wvoice, length, resume, fr1, fr2);
  679. #endif
  680. if (resume == 0)
  681. SetSynth_Klatt(length, fr1, fr2, wvoice, 1);
  682. int pk;
  683. int x;
  684. int ix;
  685. int fade;
  686. if (resume == 0)
  687. sample_count = 0;
  688. while (sample_count < nsamples) {
  689. kt_frame.F0hz10 = (wdata->pitch * 10) / 4096;
  690. // formants F6,F7,F8 are fixed values for cascade resonators, set in KlattInit()
  691. // but F6 is used for parallel resonator
  692. // F0 is used for the nasal zero
  693. for (ix = 0; ix < 6; ix++) {
  694. kt_frame.Fhz[ix] = peaks[ix].freq;
  695. if (ix < 4)
  696. kt_frame.Bhz[ix] = peaks[ix].bw;
  697. }
  698. for (ix = 1; ix < 7; ix++)
  699. kt_frame.Ap[ix] = peaks[ix].ap;
  700. kt_frame.AVdb = klattp[KLATT_AV];
  701. kt_frame.AVpdb = klattp[KLATT_AVp];
  702. kt_frame.AF = klattp[KLATT_Fric];
  703. kt_frame.AB = klattp[KLATT_FricBP];
  704. kt_frame.ASP = klattp[KLATT_Aspr];
  705. kt_frame.Aturb = klattp[KLATT_Turb];
  706. kt_frame.Kskew = klattp[KLATT_Skew];
  707. kt_frame.TLTdb = klattp[KLATT_Tilt];
  708. kt_frame.Kopen = klattp[KLATT_Kopen];
  709. // advance formants
  710. for (pk = 0; pk < N_PEAKS; pk++) {
  711. peaks[pk].freq1 += peaks[pk].freq_inc;
  712. peaks[pk].freq = (int)peaks[pk].freq1;
  713. peaks[pk].bw1 += peaks[pk].bw_inc;
  714. peaks[pk].bw = (int)peaks[pk].bw1;
  715. peaks[pk].bp1 += peaks[pk].bp_inc;
  716. peaks[pk].bp = (int)peaks[pk].bp1;
  717. peaks[pk].ap1 += peaks[pk].ap_inc;
  718. peaks[pk].ap = (int)peaks[pk].ap1;
  719. }
  720. // advance other parameters
  721. for (ix = 0; ix < N_KLATTP; ix++) {
  722. klattp1[ix] += klattp_inc[ix];
  723. klattp[ix] = (int)klattp1[ix];
  724. }
  725. for (ix = 0; ix <= 6; ix++) {
  726. kt_frame.Fhz_next[ix] = peaks[ix].freq;
  727. if (ix < 4)
  728. kt_frame.Bhz_next[ix] = peaks[ix].bw;
  729. }
  730. // advance the pitch
  731. wdata->pitch_ix += wdata->pitch_inc;
  732. if ((ix = wdata->pitch_ix>>8) > 127) ix = 127;
  733. x = wdata->pitch_env[ix] * wdata->pitch_range;
  734. wdata->pitch = (x>>8) + wdata->pitch_base;
  735. kt_globals.nspfr = (nsamples - sample_count);
  736. if (kt_globals.nspfr > STEPSIZE)
  737. kt_globals.nspfr = STEPSIZE;
  738. frame_init(&kt_frame); // get parameters for next frame of speech
  739. if (parwave(&kt_frame, wdata) == 1)
  740. return 1; // output buffer is full
  741. }
  742. if (end_wave > 0) {
  743. fade = 64; // not followed by formant synthesis
  744. // fade out to avoid a click
  745. kt_globals.fadeout = fade;
  746. end_wave = 0;
  747. sample_count -= fade;
  748. kt_globals.nspfr = fade;
  749. if (parwave(&kt_frame, wdata) == 1)
  750. return 1; // output buffer is full
  751. }
  752. return 0;
  753. }
  754. static void SetSynth_Klatt(int length, frame_t *fr1, frame_t *fr2, voice_t *wvoice, int control)
  755. {
  756. int ix;
  757. double next;
  758. int qix;
  759. int cmd;
  760. frame_t *fr3;
  761. static frame_t prev_fr;
  762. if (wvoice != NULL) {
  763. if ((wvoice->klattv[0] > 0) && (wvoice->klattv[0] <= 5 )) {
  764. kt_globals.glsource = wvoice->klattv[0];
  765. kt_globals.scale_wav = scale_wav_tab[kt_globals.glsource];
  766. }
  767. kt_globals.f0_flutter = wvoice->flutter/32;
  768. }
  769. end_wave = 0;
  770. if (control & 2)
  771. end_wave = 1; // fadeout at the end
  772. if (control & 1) {
  773. end_wave = 1;
  774. for (qix = wcmdq_head+1;; qix++) {
  775. if (qix >= N_WCMDQ) qix = 0;
  776. if (qix == wcmdq_tail) break;
  777. cmd = wcmdq[qix][0];
  778. if (cmd == WCMD_KLATT) {
  779. end_wave = 0; // next wave generation is from another spectrum
  780. fr3 = (frame_t *)wcmdq[qix][2];
  781. for (ix = 1; ix < 6; ix++) {
  782. if (fr3->ffreq[ix] != fr2->ffreq[ix]) {
  783. // there is a discontinuity in formants
  784. end_wave = 2;
  785. break;
  786. }
  787. }
  788. break;
  789. }
  790. if ((cmd == WCMD_WAVE) || (cmd == WCMD_PAUSE))
  791. break; // next is not from spectrum, so continue until end of wave cycle
  792. }
  793. }
  794. if (control & 1) {
  795. for (ix = 1; ix < 6; ix++) {
  796. if (prev_fr.ffreq[ix] != fr1->ffreq[ix]) {
  797. // Discontinuity in formants.
  798. // end_wave was set in SetSynth_Klatt() to fade out the previous frame
  799. KlattReset(0);
  800. break;
  801. }
  802. }
  803. memcpy(&prev_fr, fr2, sizeof(prev_fr));
  804. }
  805. for (ix = 0; ix < N_KLATTP; ix++) {
  806. if ((ix >= 5) && ((fr1->frflags & FRFLAG_KLATT) == 0)) {
  807. klattp1[ix] = klattp[ix] = 0;
  808. klattp_inc[ix] = 0;
  809. } else {
  810. klattp1[ix] = klattp[ix] = fr1->klattp[ix];
  811. klattp_inc[ix] = (double)((fr2->klattp[ix] - klattp[ix]) * STEPSIZE)/length;
  812. }
  813. }
  814. nsamples = length;
  815. for (ix = 1; ix < 6; ix++) {
  816. peaks[ix].freq1 = (fr1->ffreq[ix] * wvoice->freq[ix] / 256.0) + wvoice->freqadd[ix];
  817. peaks[ix].freq = (int)peaks[ix].freq1;
  818. next = (fr2->ffreq[ix] * wvoice->freq[ix] / 256.0) + wvoice->freqadd[ix];
  819. peaks[ix].freq_inc = ((next - peaks[ix].freq1) * STEPSIZE) / length;
  820. if (ix < 4) {
  821. // klatt bandwidth for f1, f2, f3 (others are fixed)
  822. peaks[ix].bw1 = fr1->bw[ix] * 2 * (wvoice->width[ix] / 256.0);
  823. peaks[ix].bw = (int)peaks[ix].bw1;
  824. next = fr2->bw[ix] * 2;
  825. peaks[ix].bw_inc = ((next - peaks[ix].bw1) * STEPSIZE) / length;
  826. }
  827. }
  828. // nasal zero frequency
  829. peaks[0].freq1 = fr1->klattp[KLATT_FNZ] * 2;
  830. if (peaks[0].freq1 == 0)
  831. peaks[0].freq1 = kt_frame.Fhz[F_NP]; // if no nasal zero, set it to same freq as nasal pole
  832. peaks[0].freq = (int)peaks[0].freq1;
  833. next = fr2->klattp[KLATT_FNZ] * 2;
  834. if (next == 0)
  835. next = kt_frame.Fhz[F_NP];
  836. peaks[0].freq_inc = ((next - peaks[0].freq1) * STEPSIZE) / length;
  837. peaks[0].bw1 = 89;
  838. peaks[0].bw = 89;
  839. peaks[0].bw_inc = 0;
  840. if (fr1->frflags & FRFLAG_KLATT) {
  841. // the frame contains additional parameters for parallel resonators
  842. for (ix = 1; ix < 7; ix++) {
  843. peaks[ix].bp1 = fr1->klatt_bp[ix] * 4; // parallel bandwidth
  844. peaks[ix].bp = (int)peaks[ix].bp1;
  845. next = fr2->klatt_bp[ix] * 4;
  846. peaks[ix].bp_inc = ((next - peaks[ix].bp1) * STEPSIZE) / length;
  847. peaks[ix].ap1 = fr1->klatt_ap[ix]; // parallal amplitude
  848. peaks[ix].ap = (int)peaks[ix].ap1;
  849. next = fr2->klatt_ap[ix];
  850. peaks[ix].ap_inc = ((next - peaks[ix].ap1) * STEPSIZE) / length;
  851. }
  852. }
  853. }
  854. void KlattInit()
  855. {
  856. static short formant_hz[10] = { 280, 688, 1064, 2806, 3260, 3700, 6500, 7000, 8000, 280 };
  857. static short bandwidth[10] = { 89, 160, 70, 160, 200, 200, 500, 500, 500, 89 };
  858. static short parallel_amp[10] = { 0, 59, 59, 59, 59, 59, 59, 0, 0, 0 };
  859. static short parallel_bw[10] = { 59, 59, 89, 149, 200, 200, 500, 0, 0, 0 };
  860. int ix;
  861. #ifdef INCLUDE_SPEECHPLAYER
  862. KlattInitSP();
  863. #endif
  864. sample_count = 0;
  865. kt_globals.synthesis_model = CASCADE_PARALLEL;
  866. kt_globals.samrate = 22050;
  867. kt_globals.glsource = IMPULSIVE;
  868. kt_globals.scale_wav = scale_wav_tab[kt_globals.glsource];
  869. kt_globals.natural_samples = natural_samples;
  870. kt_globals.num_samples = NUMBER_OF_SAMPLES;
  871. kt_globals.sample_factor = 3.0;
  872. kt_globals.nspfr = (kt_globals.samrate * 10) / 1000;
  873. kt_globals.outsl = 0;
  874. kt_globals.f0_flutter = 20;
  875. KlattReset(2);
  876. // set default values for frame parameters
  877. for (ix = 0; ix <= 9; ix++) {
  878. kt_frame.Fhz[ix] = formant_hz[ix];
  879. kt_frame.Bhz[ix] = bandwidth[ix];
  880. kt_frame.Ap[ix] = parallel_amp[ix];
  881. kt_frame.Bphz[ix] = parallel_bw[ix];
  882. }
  883. kt_frame.Bhz_next[F_NZ] = bandwidth[F_NZ];
  884. kt_frame.F0hz10 = 1000;
  885. kt_frame.AVdb = 59;
  886. kt_frame.ASP = 0;
  887. kt_frame.Kopen = 40;
  888. kt_frame.Aturb = 0;
  889. kt_frame.TLTdb = 0;
  890. kt_frame.AF = 50;
  891. kt_frame.Kskew = 0;
  892. kt_frame.AB = 0;
  893. kt_frame.AVpdb = 0;
  894. kt_frame.Gain0 = 62;
  895. }