You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

utils.py 3.8KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114
  1. import os
  2. import torch
  3. import json
  4. import random
  5. import pandas as pd
  6. import numpy as np
  7. def calc_stat(numbers):
  8. mu = sum(numbers) / len(numbers)
  9. sigma = (sum([(x - mu) ** 2 for x in numbers]) / len(numbers)) ** 0.5
  10. return mu, sigma
  11. def conf_inv(mu, sigma, n):
  12. delta = 2.776 * sigma / (n ** 0.5) # 95%
  13. return mu - delta, mu + delta
  14. def arg_min(lst):
  15. m = float('inf')
  16. idx = 0
  17. for i, v in enumerate(lst):
  18. if v < m:
  19. m = v
  20. idx = i
  21. return m, idx
  22. def save_best_model(state_dict, model_dir: str, best_epoch: int, keep: int):
  23. save_to = os.path.join(model_dir, '{}.pkl'.format(best_epoch))
  24. torch.save(state_dict, save_to)
  25. model_files = [f for f in os.listdir(model_dir) if os.path.splitext(f)[-1] == '.pkl']
  26. epochs = [int(os.path.splitext(f)[0]) for f in model_files if str.isdigit(f[0])]
  27. outdated = sorted(epochs, reverse=True)[keep:]
  28. for n in outdated:
  29. os.remove(os.path.join(model_dir, '{}.pkl'.format(n)))
  30. def find_best_model(model_dir: str):
  31. model_files = [f for f in os.listdir(model_dir) if os.path.splitext(f)[-1] == '.pkl']
  32. epochs = [int(os.path.splitext(f)[0]) for f in model_files if str.isdigit(f[0])]
  33. best_epoch = max(epochs)
  34. return os.path.join(model_dir, '{}.pkl'.format(best_epoch))
  35. def save_args(args, save_to: str):
  36. args_dict = args.__dict__
  37. with open(save_to, 'w') as f:
  38. json.dump(args_dict, f, indent=2)
  39. def read_map(map_file, keep_str = False):
  40. d = {}
  41. print(map_file)
  42. with open(map_file, 'r') as f:
  43. f.readline()
  44. for line in f:
  45. k, v = line.rstrip().split()
  46. if keep_str:
  47. d[k] = v
  48. else:
  49. d[k] = int(v)
  50. return d
  51. def random_split_indices(n_samples, train_rate: float = None, test_rate: float = None):
  52. if train_rate is not None and (train_rate < 0 or train_rate > 1):
  53. raise ValueError("train rate should be in [0, 1], found {}".format(train_rate))
  54. elif test_rate is not None:
  55. if test_rate < 0 or test_rate > 1:
  56. raise ValueError("test rate should be in [0, 1], found {}".format(test_rate))
  57. train_rate = 1 - test_rate
  58. elif train_rate is None and test_rate is None:
  59. raise ValueError("Either train_rate or test_rate should be given.")
  60. evidence = list(range(n_samples))
  61. train_size = int(len(evidence) * train_rate)
  62. random.shuffle(evidence)
  63. train_indices = evidence[:train_size]
  64. test_indices = evidence[train_size:]
  65. return train_indices, test_indices
  66. # --------------------------------------------------------------------- Our Part:
  67. def get_index_by_name(drug_name):
  68. project_path = os.path.dirname(os.path.abspath(os.path.join(os.path.dirname( __file__ ), '..')))
  69. drugname2drugbankid_file = os.path.join(project_path, 'drug/data/drugname2drugbankid.tsv')
  70. drug_name2drugbank_id_df = pd.read_csv(drugname2drugbankid_file, sep='\s+')
  71. drug_bank_id = drug_name2drugbank_id_df[drug_name2drugbank_id_df['drug_name'] == drug_name].drug_bank_id.item()
  72. negative_index = list(drug_name2drugbank_id_df['drug_name']).index(drug_name)
  73. drug2id_file = os.path.join(project_path, 'drug/data/DDI/DrugBank/raw/', 'drug2id.tsv')
  74. drug2id_df = pd.read_csv(drug2id_file , sep='\t')
  75. row = drug2id_df[drug2id_df['DrugBank_id'] == drug_bank_id]
  76. if row.empty:
  77. drug_index = - negative_index
  78. else:
  79. drug_index = row.node_index.item()
  80. return drug_index
  81. def get_FP_by_negative_index(index):
  82. index = index.item()
  83. project_path = os.path.dirname(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
  84. drug2FP_file = os.path.join(project_path, 'drug/data/drug2FP_synergy.csv')
  85. drug2FP_df = pd.read_csv(drug2FP_file)
  86. array = np.array(list(drug2FP_df.iloc[-index])[1:])
  87. return torch.tensor(array, dtype=torch.float32)