123456789101112131415161718192021222324 |
- import numpy as np
- import torch
- import torch.nn.functional as F
- import torch.nn as nn
-
- from models import GCN
- from datasets import DDInteractionDataset
-
-
-
- if __name__ == '__main__':
- ddiDataset = DDInteractionDataset
- model = GCN(dataset.num_features, dataset.num_classes)
- model.train()
- optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
-
- # training on CPU
- for epoch in range(1, 6):
- optimizer.zero_grad()
- out = model(data.x, data.edge_index, data.edge_attr)
- loss = F.cross_entropy(out, data.y)
- loss.backward()
- optimizer.step()
- print(f"Epoch: {epoch}, Loss: {loss}")
|