You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

cross_validation.py 9.2KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217
  1. import argparse
  2. import os
  3. import logging
  4. import time
  5. import pickle
  6. import torch
  7. import torch.nn as nn
  8. import gc
  9. from datetime import datetime
  10. time_str = str(datetime.now().strftime('%y%m%d%H%M'))
  11. from model.datasets import FastSynergyDataset, FastTensorDataLoader
  12. from model.models import MLP
  13. from model.utils import save_args, save_best_model, find_best_model, arg_min, random_split_indices, calc_stat, conf_inv
  14. from const import SYNERGY_FILE, CELL_FEAT_FILE, CELL2ID_FILE, OUTPUT_DIR, DRUGNAME_2_DRUGBANKID_FILE
  15. def eval_model(model, optimizer, loss_func, train_data, test_data,
  16. batch_size, n_epoch, patience, gpu_id, mdl_dir):
  17. tr_indices, es_indices = random_split_indices(len(train_data), test_rate=0.1)
  18. train_loader = FastTensorDataLoader(*train_data.tensor_samples(tr_indices), batch_size=batch_size, shuffle=True)
  19. valid_loader = FastTensorDataLoader(*train_data.tensor_samples(es_indices), batch_size=len(es_indices) // 4)
  20. test_loader = FastTensorDataLoader(*test_data.tensor_samples(), batch_size=len(test_data) // 4)
  21. train_model(model, optimizer, loss_func, train_loader, valid_loader, n_epoch, patience, gpu_id,
  22. sl=True, mdl_dir=mdl_dir)
  23. test_loss = eval_epoch(model, test_loader, loss_func, gpu_id)
  24. test_loss /= len(test_data)
  25. return test_loss
  26. def step_batch(model, batch, loss_func, gpu_id=None, train=True):
  27. drug1_id, drug2_id, cell_feat, y_true = batch
  28. if gpu_id is not None:
  29. drug1_id = drug1_id.cuda(gpu_id)
  30. drug2_id = drug2_id.cuda(gpu_id)
  31. cell_feat = cell_feat.cuda(gpu_id)
  32. y_true = y_true.cuda(gpu_id)
  33. if train:
  34. y_pred = model(drug1_id, drug2_id, cell_feat)
  35. else:
  36. yp1 = model(drug1_id, drug2_id, cell_feat)
  37. yp2 = model(drug2_id, drug1_id, cell_feat)
  38. y_pred = (yp1 + yp2) / 2
  39. loss = loss_func(y_pred, y_true)
  40. return loss
  41. def train_epoch(model, loader, loss_func, optimizer, gpu_id=None):
  42. model.train()
  43. epoch_loss = 0
  44. for _, batch in enumerate(loader):
  45. optimizer.zero_grad()
  46. loss = step_batch(model, batch, loss_func, gpu_id)
  47. loss.backward()
  48. optimizer.step()
  49. epoch_loss += loss.item()
  50. return epoch_loss
  51. def eval_epoch(model, loader, loss_func, gpu_id=None):
  52. model.eval()
  53. with torch.no_grad():
  54. epoch_loss = 0
  55. for batch in loader:
  56. loss = step_batch(model, batch, loss_func, gpu_id, train=False)
  57. epoch_loss += loss.item()
  58. return epoch_loss
  59. def train_model(model, optimizer, loss_func, train_loader, valid_loader, n_epoch, patience, gpu_id,
  60. sl=False, mdl_dir=None):
  61. min_loss = float('inf')
  62. angry = 0
  63. for epoch in range(1, n_epoch + 1):
  64. trn_loss = train_epoch(model, train_loader, loss_func, optimizer, gpu_id)
  65. trn_loss /= train_loader.dataset_len
  66. val_loss = eval_epoch(model, valid_loader, loss_func, gpu_id)
  67. val_loss /= valid_loader.dataset_len
  68. print("loss epoch " + str(epoch) + ": " + str(trn_loss))
  69. if val_loss < min_loss:
  70. angry = 0
  71. min_loss = val_loss
  72. if sl:
  73. # TODO: save best model in case of need
  74. save_best_model(model.state_dict(), mdl_dir, epoch, keep=1)
  75. pass
  76. else:
  77. angry += 1
  78. if angry >= patience:
  79. break
  80. if sl:
  81. model.load_state_dict(torch.load(find_best_model(mdl_dir)))
  82. return min_loss
  83. def create_model(data, hidden_size, gpu_id=None):
  84. # TODO: use our own MLP model
  85. # get 256
  86. model = MLP(data.cell_feat_len() + 2 * 256, hidden_size, gpu_id)
  87. if gpu_id is not None:
  88. model = model.cuda(gpu_id)
  89. return model
  90. def cv(args, out_dir):
  91. torch.cuda.set_per_process_memory_fraction(0.6, 0)
  92. # Clear any cached memory
  93. gc.collect()
  94. torch.cuda.empty_cache()
  95. save_args(args, os.path.join(out_dir, 'args.json'))
  96. test_loss_file = os.path.join(out_dir, 'test_loss.pkl')
  97. print("cuda available: " + str(torch.cuda.is_available()))
  98. if torch.cuda.is_available() and (args.gpu is not None):
  99. gpu_id = args.gpu
  100. else:
  101. gpu_id = None
  102. n_folds = 5
  103. n_delimiter = 60
  104. loss_func = nn.MSELoss(reduction='sum')
  105. test_losses = []
  106. for test_fold in range(n_folds):
  107. outer_trn_folds = [x for x in range(n_folds) if x != test_fold]
  108. logging.info("Outer: train folds {}, test folds {}".format(outer_trn_folds, test_fold))
  109. logging.info("-" * n_delimiter)
  110. param = []
  111. losses = []
  112. for hs in args.hidden:
  113. for lr in args.lr:
  114. param.append((hs, lr))
  115. logging.info("Hidden size: {} | Learning rate: {}".format(hs, lr))
  116. ret_vals = []
  117. for valid_fold in outer_trn_folds:
  118. inner_trn_folds = [x for x in outer_trn_folds if x != valid_fold]
  119. valid_folds = [valid_fold]
  120. train_data = FastSynergyDataset(DRUGNAME_2_DRUGBANKID_FILE, CELL2ID_FILE, CELL_FEAT_FILE,
  121. SYNERGY_FILE, use_folds=inner_trn_folds)
  122. valid_data = FastSynergyDataset(DRUGNAME_2_DRUGBANKID_FILE, CELL2ID_FILE, CELL_FEAT_FILE,
  123. SYNERGY_FILE, use_folds=valid_folds, train=False)
  124. train_loader = FastTensorDataLoader(*train_data.tensor_samples(), batch_size=args.batch,
  125. shuffle=True)
  126. valid_loader = FastTensorDataLoader(*valid_data.tensor_samples(), batch_size=len(valid_data) // 4)
  127. model = create_model(train_data, hs, gpu_id)
  128. optimizer = torch.optim.Adam(model.parameters(), lr=lr)
  129. logging.info(
  130. "Start inner loop: train folds {}, valid folds {}".format(inner_trn_folds, valid_folds))
  131. ret = train_model(model, optimizer, loss_func, train_loader, valid_loader,
  132. args.epoch, args.patience, gpu_id, sl=False)
  133. ret_vals.append(ret)
  134. del model
  135. inner_loss = sum(ret_vals) / len(ret_vals)
  136. logging.info("Inner loop completed. Mean valid loss: {:.4f}".format(inner_loss))
  137. logging.info("-" * n_delimiter)
  138. losses.append(inner_loss)
  139. torch.cuda.memory_summary(device=None, abbreviated=False)
  140. gc.collect()
  141. torch.cuda.empty_cache()
  142. time.sleep(10)
  143. min_ls, min_idx = arg_min(losses)
  144. best_hs, best_lr = param[min_idx]
  145. train_data = FastSynergyDataset(DRUGNAME_2_DRUGBANKID_FILE, CELL2ID_FILE, CELL_FEAT_FILE,
  146. SYNERGY_FILE, use_folds=outer_trn_folds)
  147. test_data = FastSynergyDataset(DRUGNAME_2_DRUGBANKID_FILE, CELL2ID_FILE, CELL_FEAT_FILE,
  148. SYNERGY_FILE, use_folds=[test_fold], train=False)
  149. model = create_model(train_data, best_hs, gpu_id)
  150. optimizer = torch.optim.Adam(model.parameters(), lr=best_lr)
  151. logging.info("Best hidden size: {} | Best learning rate: {}".format(best_hs, best_lr))
  152. logging.info("Start test on fold {}.".format([test_fold]))
  153. test_mdl_dir = os.path.join(out_dir, str(test_fold))
  154. if not os.path.exists(test_mdl_dir):
  155. os.makedirs(test_mdl_dir)
  156. test_loss = eval_model(model, optimizer, loss_func, train_data, test_data,
  157. args.batch, args.epoch, args.patience, gpu_id, test_mdl_dir)
  158. test_losses.append(test_loss)
  159. logging.info("Test loss: {:.4f}".format(test_loss))
  160. logging.info("*" * n_delimiter + '\n')
  161. logging.info("CV completed")
  162. with open(test_loss_file, 'wb') as f:
  163. pickle.dump(test_losses, f)
  164. mu, sigma = calc_stat(test_losses)
  165. logging.info("MSE: {:.4f} ± {:.4f}".format(mu, sigma))
  166. lo, hi = conf_inv(mu, sigma, len(test_losses))
  167. logging.info("Confidence interval: [{:.4f}, {:.4f}]".format(lo, hi))
  168. rmse_loss = [x ** 0.5 for x in test_losses]
  169. mu, sigma = calc_stat(rmse_loss)
  170. logging.info("RMSE: {:.4f} ± {:.4f}".format(mu, sigma))
  171. def main():
  172. parser = argparse.ArgumentParser()
  173. parser.add_argument('--epoch', type=int, default=500, help="n epoch")
  174. parser.add_argument('--batch', type=int, default=256, help="batch size")
  175. parser.add_argument('--gpu', type=int, default=None, help="cuda device")
  176. parser.add_argument('--patience', type=int, default=100, help='patience for early stop')
  177. parser.add_argument('--suffix', type=str, default=time_str, help="model dir suffix")
  178. parser.add_argument('--hidden', type=int, nargs='+', default=[2048, 4096, 8192], help="hidden size")
  179. parser.add_argument('--lr', type=float, nargs='+', default=[1e-3, 1e-4, 1e-5], help="learning rate")
  180. args = parser.parse_args()
  181. out_dir = os.path.join(OUTPUT_DIR, 'cv_{}'.format(args.suffix))
  182. if not os.path.exists(out_dir):
  183. os.makedirs(out_dir)
  184. log_file = os.path.join(out_dir, 'cv.log')
  185. logging.basicConfig(filename=log_file,
  186. format='%(asctime)s %(message)s',
  187. datefmt='[%Y-%m-%d %H:%M:%S]',
  188. level=logging.INFO)
  189. cv(args, out_dir)
  190. if __name__ == '__main__':
  191. main()