You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

models.py 2.7KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677
  1. import torch
  2. import torch.nn as nn
  3. import torch.nn.functional as F
  4. import os
  5. import sys
  6. PROJ_DIR = os.path.dirname(os.path.abspath(os.path.join(os.path.dirname( __file__ ), '..')))
  7. sys.path.insert(0, PROJ_DIR)
  8. from drug.models import GCN
  9. from drug.datasets import DDInteractionDataset
  10. from model.utils import get_FP_by_negative_index
  11. class Connector(nn.Module):
  12. def __init__(self, gpu_id=None):
  13. self.gpu_id = gpu_id
  14. super(Connector, self).__init__()
  15. # self.ddiDataset = DDInteractionDataset(gpu_id = gpu_id)
  16. self.gcn = None
  17. #Cell line features
  18. # np.load('cell_feat.npy')
  19. def forward(self, drug1_idx, drug2_idx, cell_feat, subgraph):
  20. if self.gcn == None:
  21. self.gcn = GCN(subgraph.num_features, subgraph.num_features // 2)
  22. x = subgraph.get().x
  23. edge_index = subgraph.edge_index
  24. x = self.gcn(x, edge_index)
  25. drug1_idx = torch.flatten(drug1_idx)
  26. drug2_idx = torch.flatten(drug2_idx)
  27. #drug1_feat = x[drug1_idx]
  28. #drug2_feat = x[drug2_idx]
  29. drug1_feat = torch.empty((len(drug1_idx), len(x[0])))
  30. drug2_feat = torch.empty((len(drug2_idx), len(x[0])))
  31. for index, element in enumerate(drug1_idx):
  32. drug1_feat[index] = (x[element])
  33. for index, element in enumerate(drug2_idx):
  34. drug2_feat[index] = (x[element])
  35. if self.gpu_id is not None:
  36. drug1_feat = drug1_feat.cuda(self.gpu_id)
  37. drug2_feat = drug2_feat.cuda(self.gpu_id)
  38. for i, x in enumerate(drug1_idx):
  39. if x < 0:
  40. drug1_feat[i] = get_FP_by_negative_index(x)
  41. for i, x in enumerate(drug2_idx):
  42. if x < 0:
  43. drug2_feat[i] = get_FP_by_negative_index(x)
  44. feat = torch.cat([drug1_feat, drug2_feat, cell_feat], 1)
  45. return feat
  46. class MLP(nn.Module):
  47. def __init__(self, input_size: int, hidden_size: int, gpu_id=None):
  48. super(MLP, self).__init__()
  49. self.layers = nn.Sequential(
  50. nn.Linear(input_size, hidden_size),
  51. nn.ReLU(),
  52. nn.BatchNorm1d(hidden_size),
  53. nn.Linear(hidden_size, hidden_size // 2),
  54. nn.ReLU(),
  55. nn.BatchNorm1d(hidden_size // 2),
  56. nn.Linear(hidden_size // 2, 1)
  57. )
  58. self.connector = Connector(gpu_id)
  59. # prev input: self, drug1_feat: torch.Tensor, drug2_feat: torch.Tensor, cell_feat: torch.Tensor, subgraph: related subgraph for the batch
  60. def forward(self, drug1_idx, drug2_idx, cell_feat, subgraph):
  61. feat = self.connector(drug1_idx, drug2_idx, cell_feat, subgraph)
  62. out = self.layers(feat)
  63. return out
  64. # other PRODeepSyn models have been deleted for now