You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

cross_validation.py 9.1KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211
  1. import argparse
  2. import os
  3. import logging
  4. import time
  5. import pickle
  6. import torch
  7. import torch.nn as nn
  8. from datetime import datetime
  9. time_str = str(datetime.now().strftime('%y%m%d%H%M'))
  10. from model.datasets import FastSynergyDataset, FastTensorDataLoader
  11. from model.models import MLP
  12. from model.utils import save_args, save_best_model, find_best_model, arg_min, random_split_indices, calc_stat, conf_inv
  13. from const import SYNERGY_FILE, CELL_FEAT_FILE, CELL2ID_FILE, OUTPUT_DIR, DRUGNAME_2_DRUGBANKID_FILE
  14. def eval_model(model, optimizer, loss_func, train_data, test_data,
  15. batch_size, n_epoch, patience, gpu_id, mdl_dir):
  16. tr_indices, es_indices = random_split_indices(len(train_data), test_rate=0.1)
  17. train_loader = FastTensorDataLoader(*train_data.tensor_samples(tr_indices), batch_size=batch_size, shuffle=True)
  18. valid_loader = FastTensorDataLoader(*train_data.tensor_samples(es_indices), batch_size=len(es_indices) // 4)
  19. test_loader = FastTensorDataLoader(*test_data.tensor_samples(), batch_size=len(test_data) // 4)
  20. train_model(model, optimizer, loss_func, train_loader, valid_loader, n_epoch, patience, gpu_id,
  21. sl=True, mdl_dir=mdl_dir)
  22. test_loss = eval_epoch(model, test_loader, loss_func, gpu_id)
  23. test_loss /= len(test_data)
  24. return test_loss
  25. def step_batch(model, batch, loss_func, gpu_id=None, train=True):
  26. drug1_id, drug2_id, cell_feat, y_true = batch
  27. if gpu_id is not None:
  28. drug1_id = drug1_id.cuda(gpu_id)
  29. drug2_id = drug2_id.cuda(gpu_id)
  30. cell_feat = cell_feat.cuda(gpu_id)
  31. pass
  32. if train:
  33. y_pred = model(drug1_id, drug2_id, cell_feat)
  34. else:
  35. yp1 = model(drug1_id, drug2_id, cell_feat)
  36. yp2 = model(drug2_id, drug1_id, cell_feat)
  37. y_pred = (yp1 + yp2) / 2
  38. loss = loss_func(y_pred, y_true)
  39. return loss
  40. def train_epoch(model, loader, loss_func, optimizer, gpu_id=None):
  41. model.train()
  42. epoch_loss = 0
  43. for _, batch in enumerate(loader):
  44. optimizer.zero_grad()
  45. loss = step_batch(model, batch, loss_func, gpu_id)
  46. loss.backward()
  47. optimizer.step()
  48. epoch_loss += loss.item()
  49. return epoch_loss
  50. def eval_epoch(model, loader, loss_func, gpu_id=None):
  51. model.eval()
  52. with torch.no_grad():
  53. epoch_loss = 0
  54. for batch in loader:
  55. loss = step_batch(model, batch, loss_func, gpu_id, train=False)
  56. epoch_loss += loss.item()
  57. return epoch_loss
  58. def train_model(model, optimizer, loss_func, train_loader, valid_loader, n_epoch, patience, gpu_id,
  59. sl=False, mdl_dir=None):
  60. min_loss = float('inf')
  61. angry = 0
  62. for epoch in range(1, n_epoch + 1):
  63. trn_loss = train_epoch(model, train_loader, loss_func, optimizer, gpu_id)
  64. trn_loss /= train_loader.dataset_len
  65. val_loss = eval_epoch(model, valid_loader, loss_func, gpu_id)
  66. val_loss /= valid_loader.dataset_len
  67. print("loss epoch " + str(epoch) + ": " + str(trn_loss))
  68. if val_loss < min_loss:
  69. angry = 0
  70. min_loss = val_loss
  71. if sl:
  72. # TODO: save best model in case of need
  73. save_best_model(model.state_dict(), mdl_dir, epoch, keep=1)
  74. pass
  75. else:
  76. angry += 1
  77. if angry >= patience:
  78. break
  79. if sl:
  80. model.load_state_dict(torch.load(find_best_model(mdl_dir)))
  81. return min_loss
  82. def create_model(data, hidden_size, gpu_id=None):
  83. # TODO: use our own MLP model
  84. # get 256
  85. model = MLP(data.cell_feat_len() + 2 * 256, hidden_size, gpu_id)
  86. if gpu_id is not None:
  87. model = model.cuda(gpu_id)
  88. return model
  89. def cv(args, out_dir):
  90. torch.cuda.set_per_process_memory_fraction(0.6, 0)
  91. # Clear any cached memory
  92. torch.cuda.empty_cache()
  93. save_args(args, os.path.join(out_dir, 'args.json'))
  94. test_loss_file = os.path.join(out_dir, 'test_loss.pkl')
  95. print("cuda available: " + str(torch.cuda.is_available()))
  96. if torch.cuda.is_available() and (args.gpu is not None):
  97. gpu_id = args.gpu
  98. else:
  99. gpu_id = None
  100. n_folds = 5
  101. n_delimiter = 60
  102. loss_func = nn.MSELoss(reduction='sum')
  103. test_losses = []
  104. for test_fold in range(n_folds):
  105. outer_trn_folds = [x for x in range(n_folds) if x != test_fold]
  106. logging.info("Outer: train folds {}, test folds {}".format(outer_trn_folds, test_fold))
  107. logging.info("-" * n_delimiter)
  108. param = []
  109. losses = []
  110. for hs in args.hidden:
  111. for lr in args.lr:
  112. param.append((hs, lr))
  113. logging.info("Hidden size: {} | Learning rate: {}".format(hs, lr))
  114. ret_vals = []
  115. for valid_fold in outer_trn_folds:
  116. inner_trn_folds = [x for x in outer_trn_folds if x != valid_fold]
  117. valid_folds = [valid_fold]
  118. train_data = FastSynergyDataset(DRUGNAME_2_DRUGBANKID_FILE, CELL2ID_FILE, CELL_FEAT_FILE,
  119. SYNERGY_FILE, use_folds=inner_trn_folds)
  120. valid_data = FastSynergyDataset(DRUGNAME_2_DRUGBANKID_FILE, CELL2ID_FILE, CELL_FEAT_FILE,
  121. SYNERGY_FILE, use_folds=valid_folds, train=False)
  122. train_loader = FastTensorDataLoader(*train_data.tensor_samples(), batch_size=args.batch,
  123. shuffle=True)
  124. valid_loader = FastTensorDataLoader(*valid_data.tensor_samples(), batch_size=len(valid_data) // 4)
  125. model = create_model(train_data, hs, gpu_id)
  126. optimizer = torch.optim.Adam(model.parameters(), lr=lr)
  127. logging.info(
  128. "Start inner loop: train folds {}, valid folds {}".format(inner_trn_folds, valid_folds))
  129. ret = train_model(model, optimizer, loss_func, train_loader, valid_loader,
  130. args.epoch, args.patience, gpu_id, sl=False)
  131. ret_vals.append(ret)
  132. del model
  133. inner_loss = sum(ret_vals) / len(ret_vals)
  134. logging.info("Inner loop completed. Mean valid loss: {:.4f}".format(inner_loss))
  135. logging.info("-" * n_delimiter)
  136. losses.append(inner_loss)
  137. torch.cuda.empty_cache()
  138. time.sleep(10)
  139. min_ls, min_idx = arg_min(losses)
  140. best_hs, best_lr = param[min_idx]
  141. train_data = FastSynergyDataset(DRUGNAME_2_DRUGBANKID_FILE, CELL2ID_FILE, CELL_FEAT_FILE,
  142. SYNERGY_FILE, use_folds=outer_trn_folds)
  143. test_data = FastSynergyDataset(DRUGNAME_2_DRUGBANKID_FILE, CELL2ID_FILE, CELL_FEAT_FILE,
  144. SYNERGY_FILE, use_folds=[test_fold], train=False)
  145. model = create_model(train_data, best_hs, gpu_id)
  146. optimizer = torch.optim.Adam(model.parameters(), lr=best_lr)
  147. logging.info("Best hidden size: {} | Best learning rate: {}".format(best_hs, best_lr))
  148. logging.info("Start test on fold {}.".format([test_fold]))
  149. test_mdl_dir = os.path.join(out_dir, str(test_fold))
  150. if not os.path.exists(test_mdl_dir):
  151. os.makedirs(test_mdl_dir)
  152. test_loss = eval_model(model, optimizer, loss_func, train_data, test_data,
  153. args.batch, args.epoch, args.patience, gpu_id, test_mdl_dir)
  154. test_losses.append(test_loss)
  155. logging.info("Test loss: {:.4f}".format(test_loss))
  156. logging.info("*" * n_delimiter + '\n')
  157. logging.info("CV completed")
  158. with open(test_loss_file, 'wb') as f:
  159. pickle.dump(test_losses, f)
  160. mu, sigma = calc_stat(test_losses)
  161. logging.info("MSE: {:.4f} ± {:.4f}".format(mu, sigma))
  162. lo, hi = conf_inv(mu, sigma, len(test_losses))
  163. logging.info("Confidence interval: [{:.4f}, {:.4f}]".format(lo, hi))
  164. rmse_loss = [x ** 0.5 for x in test_losses]
  165. mu, sigma = calc_stat(rmse_loss)
  166. logging.info("RMSE: {:.4f} ± {:.4f}".format(mu, sigma))
  167. def main():
  168. parser = argparse.ArgumentParser()
  169. parser.add_argument('--epoch', type=int, default=500, help="n epoch")
  170. parser.add_argument('--batch', type=int, default=256, help="batch size")
  171. parser.add_argument('--gpu', type=int, default=None, help="cuda device")
  172. parser.add_argument('--patience', type=int, default=100, help='patience for early stop')
  173. parser.add_argument('--suffix', type=str, default=time_str, help="model dir suffix")
  174. parser.add_argument('--hidden', type=int, nargs='+', default=[2048, 4096, 8192], help="hidden size")
  175. parser.add_argument('--lr', type=float, nargs='+', default=[1e-3, 1e-4, 1e-5], help="learning rate")
  176. args = parser.parse_args()
  177. out_dir = os.path.join(OUTPUT_DIR, 'cv_{}'.format(args.suffix))
  178. if not os.path.exists(out_dir):
  179. os.makedirs(out_dir)
  180. log_file = os.path.join(out_dir, 'cv.log')
  181. logging.basicConfig(filename=log_file,
  182. format='%(asctime)s %(message)s',
  183. datefmt='[%Y-%m-%d %H:%M:%S]',
  184. level=logging.INFO)
  185. cv(args, out_dir)
  186. if __name__ == '__main__':
  187. main()