You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

utils.py 4.0KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119
  1. import os
  2. import torch
  3. import json
  4. import random
  5. import pandas as pd
  6. import numpy as np
  7. from const import SYNERGY_FILE, CELL_FEAT_FILE, CELL2ID_FILE, OUTPUT_DIR, DRUGNAME_2_DRUGBANKID_FILE, DRUGN2ID_FILE
  8. def calc_stat(numbers):
  9. mu = sum(numbers) / len(numbers)
  10. sigma = (sum([(x - mu) ** 2 for x in numbers]) / len(numbers)) ** 0.5
  11. return mu, sigma
  12. def conf_inv(mu, sigma, n):
  13. delta = 2.776 * sigma / (n ** 0.5) # 95%
  14. return mu - delta, mu + delta
  15. def arg_min(lst):
  16. m = float('inf')
  17. idx = 0
  18. for i, v in enumerate(lst):
  19. if v < m:
  20. m = v
  21. idx = i
  22. return m, idx
  23. def save_best_model(state_dict, model_dir: str, best_epoch: int, keep: int):
  24. save_to = os.path.join(model_dir, '{}.pkl'.format(best_epoch))
  25. torch.save(state_dict, save_to)
  26. model_files = [f for f in os.listdir(model_dir) if os.path.splitext(f)[-1] == '.pkl']
  27. epochs = [int(os.path.splitext(f)[0]) for f in model_files if str.isdigit(f[0])]
  28. outdated = sorted(epochs, reverse=True)[keep:]
  29. for n in outdated:
  30. os.remove(os.path.join(model_dir, '{}.pkl'.format(n)))
  31. def find_best_model(model_dir: str):
  32. model_files = [f for f in os.listdir(model_dir) if os.path.splitext(f)[-1] == '.pkl']
  33. epochs = [int(os.path.splitext(f)[0]) for f in model_files if str.isdigit(f[0])]
  34. best_epoch = max(epochs)
  35. return os.path.join(model_dir, '{}.pkl'.format(best_epoch))
  36. def save_args(args, save_to: str):
  37. args_dict = args.__dict__
  38. with open(save_to, 'w') as f:
  39. json.dump(args_dict, f, indent=2)
  40. def read_map(map_file, keep_str = False):
  41. d = {}
  42. print(map_file)
  43. with open(map_file, 'r') as f:
  44. f.readline()
  45. for line in f:
  46. k, v = line.rstrip().split()
  47. if keep_str:
  48. d[k] = v
  49. else:
  50. d[k] = int(v)
  51. return d
  52. def random_split_indices(n_samples, train_rate: float = None, test_rate: float = None):
  53. if train_rate is not None and (train_rate < 0 or train_rate > 1):
  54. raise ValueError("train rate should be in [0, 1], found {}".format(train_rate))
  55. elif test_rate is not None:
  56. if test_rate < 0 or test_rate > 1:
  57. raise ValueError("test rate should be in [0, 1], found {}".format(test_rate))
  58. train_rate = 1 - test_rate
  59. elif train_rate is None and test_rate is None:
  60. raise ValueError("Either train_rate or test_rate should be given.")
  61. evidence = list(range(n_samples))
  62. train_size = int(len(evidence) * train_rate)
  63. random.shuffle(evidence)
  64. train_indices = evidence[:train_size]
  65. test_indices = evidence[train_size:]
  66. return train_indices, test_indices
  67. # --------------------------------------------------------------------- Our Part:
  68. def read_files():
  69. drug_name2drugbank_id_df = pd.read_csv(DRUGNAME_2_DRUGBANKID_FILE, sep='\s+')
  70. drug2id_df = pd.read_csv(DRUGN2ID_FILE , sep='\t')
  71. return {'drug_name2drugbank_id_df': drug_name2drugbank_id_df, 'drug2id_df': drug2id_df}
  72. def get_index_by_name(drug_name, files_dict = None):
  73. if files_dict == None:
  74. files_dict = read_files()
  75. drug_name2drugbank_id_df = files_dict['drug_name2drugbank_id_df']
  76. drug2id_df = files_dict['drug2id_df']
  77. drug_bank_id = drug_name2drugbank_id_df[drug_name2drugbank_id_df['drug_name'] == drug_name].drug_bank_id.item()
  78. negative_index = list(drug_name2drugbank_id_df['drug_name']).index(drug_name)
  79. row = drug2id_df[drug2id_df['DrugBank_id'] == drug_bank_id]
  80. if row.empty:
  81. drug_index = - negative_index
  82. else:
  83. drug_index = row.node_index.item()
  84. return drug_index
  85. def get_FP_by_negative_index(index):
  86. index = index.item()
  87. project_path = os.path.dirname(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
  88. drug2FP_file = os.path.join(project_path, 'drug/data/drug2FP_synergy.csv')
  89. drug2FP_df = pd.read_csv(drug2FP_file)
  90. array = np.array(list(drug2FP_df.iloc[-index])[1:])
  91. return torch.tensor(array, dtype=torch.float32)