import numpy as np import torch import torch.nn.functional as F import torch.nn as nn from models import GCN from datasets import DDInteractionDataset if __name__ == '__main__': ddiDataset = DDInteractionDataset model = GCN(dataset.num_features, dataset.num_classes) model.train() optimizer = torch.optim.Adam(model.parameters(), lr=0.001) # training on CPU for epoch in range(1, 6): optimizer.zero_grad() out = model(data.x, data.edge_index, data.edge_attr) loss = F.cross_entropy(out, data.y) loss.backward() optimizer.step() print(f"Epoch: {epoch}, Loss: {loss}")