import torch
import torch.nn.functional as F
from torch_geometric.nn import GCNConv
class GCN(torch.nn.Module):
def __init__(self, in_channels, out_channels):
super().__init__()
torch.manual_seed(1234)
self.conv = GCNConv(in_channels, out_channels, add_self_loops=False)
def forward(self, x, edge_index, edge_weight=None):
x = F.dropout(x, p=0.5, training=self.training)
x = self.conv(x, edge_index, edge_weight).relu()
return x
# model = GCN(dataset.num_features, dataset.num_classes)
# model.train()
# optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
# print("Training on CPU.")
# for epoch in range(1, 6):
# optimizer.zero_grad()
# out = model(data.x, data.edge_index, data.edge_attr)
# loss = F.cross_entropy(out, data.y)
# loss.backward()
# optimizer.step()
# print(f"Epoch: {epoch}, Loss: {loss}")