import os import pickle import matplotlib.pyplot as plt import torch import json import random def arg_min(lst): m = float('inf') idx = 0 for i, v in enumerate(lst): if v < m: m = v idx = i return m, idx def save_best_model(state_dict, model_dir: str, best_epoch: int, keep: int): save_to = os.path.join(model_dir, '{}.pkl'.format(best_epoch)) torch.save(state_dict, save_to) model_files = [f for f in os.listdir(model_dir) if os.path.splitext(f)[-1] == '.pkl'] epochs = [int(os.path.splitext(f)[0]) for f in model_files if str.isdigit(f[0])] outdated = sorted(epochs, reverse=True)[keep:] for n in outdated: os.remove(os.path.join(model_dir, '{}.pkl'.format(n))) def find_best_model(model_dir: str): model_files = [f for f in os.listdir(model_dir) if os.path.splitext(f)[-1] == '.pkl'] epochs = [int(os.path.splitext(f)[0]) for f in model_files if str.isdigit(f[0])] best_epoch = max(epochs) return os.path.join(model_dir, '{}.pkl'.format(best_epoch)) def save_args(args, save_to: str): args_dict = args.__dict__ with open(save_to, 'w') as f: json.dump(args_dict, f, indent=2) def read_map(map_file): d = {} with open(map_file, 'r') as f: f.readline() for line in f: k, v = line.rstrip().split('\t') d[k] = int(v) return d def random_split_indices(n_samples, train_rate: float = None, test_rate: float = None): if train_rate is not None and (train_rate < 0 or train_rate > 1): raise ValueError("train rate should be in [0, 1], found {}".format(train_rate)) elif test_rate is not None: if test_rate < 0 or test_rate > 1: raise ValueError("test rate should be in [0, 1], found {}".format(test_rate)) train_rate = 1 - test_rate elif train_rate is None and test_rate is None: raise ValueError("Either train_rate or test_rate should be given.") evidence = list(range(n_samples)) train_size = int(len(evidence) * train_rate) random.shuffle(evidence) train_indices = evidence[:train_size] test_indices = evidence[train_size:] return train_indices, test_indices