DrugCombPred - Drug Combination Prediction Models ================================================= This repository contains deep learning models for predicting drug combination synergy scores. Two datasets are supported: 1. DrugCombDB 2. O'Neil et al. (2016) Each dataset has its own folder and model implementation. The main training script is: predictor/cross_validation.py Folder Structure: ----------------- drugcombpred/ ├── DrugCombDB/ │ ├── drug/ │ ├── cell/ │ └── predictor/ │ └── cross_validation.py ├── ONeil2016/ │ ├── drug/ │ ├── cell/ │ └── predictor/ │ └── cross_validation.py Requirements: ------------- - Python 3.7+ - PyTorch - CUDA (optional, for GPU support) Install dependencies: > pip install -r requirements.txt Running the Models: ------------------- Both models use the same script interface: cross_validation.py Available arguments: --epoch : Number of training epochs (default: 500) --batch : Batch size (default: 256) --gpu : GPU device ID to use (default: None) --patience : Early stopping patience (default: 100) --suffix : Suffix for output folder (default: current timestamp) --hidden : Hidden layer sizes (default: 2048 4096 8192) --lr : Learning rate(s) (default: 1e-3 1e-4 1e-5) Example: Run DrugCombDB Model > cd DrugCombDB/predictor > python cross_validation.py --epoch 300 --batch 128 --gpu 0 --suffix drugcomb_test Example: Run O'Neil 2016 Model > cd ONeil2016/predictor > python cross_validation.py --epoch 300 --batch 128 --gpu 0 --suffix oneil_test Output: ------- Results and logs are saved in: OUTPUT_DIR/cv_ NOTE: Make sure OUTPUT_DIR is defined or configurable in your script. Citation: --------- If you use this code or data in your research, please cite the original datasets: DrugCombDB: Zagidullin et al., Nucleic Acids Research, 2019 https://doi.org/10.1093/nar/gky1144 O'Neil et al. 2016: O'Neil et al., Cell Systems, 2016 https://doi.org/10.1016/j.cels.2016.08.015